【題目】矩形一個角的平分線分矩形一邊為1cm和3cm兩部分,則這個矩形的面積為cm2

【答案】4或12
【解析】解:本題有兩種情況,

⑴DE=1cm,EC=3cm.因為AE平分∠DAB,

故∠DAE=45°,△ADE中,AD=DE=1,

矩形面積為1×(1+3)=4cm2.(2)DE=3cm,EC=1cm.因為AE平分∠DAB,

故∠DAE=45°,△ADE中,AD=DE=3,

矩形面積為3×(1+3)=12cm2

所以答案是4或12.

【考點精析】解答此題的關(guān)鍵在于理解角的平分線的相關(guān)知識,掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線,以及對矩形的性質(zhì)的理解,了解矩形的四個角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  ;

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,平行四邊形OABC的頂點A,B的坐標(biāo)分別為(6,0),(7,3),將平行四邊形OABC繞點O逆時針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當(dāng)點C′落在BC的延長線上時,線段OA′交BC于點E,則線段C′E的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線l是由函數(shù)y= 在第一象限內(nèi)的圖象繞坐標(biāo)原點O逆時針旋轉(zhuǎn)45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.

(1)問原來規(guī)定修好這條公路需多少長時間?

(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當(dāng)施工費用最低時,甲、乙各施工了多少個月?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,ABCD,點BE、F、D在同一條直線上,∠BAE=∠DCF.

(1)求證:AECF;

(2)連結(jié)AF、EC,試猜想四邊形AECF是什么四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在四邊形ABCD中,對角線AC、BD相交于點E,且ACBD,作BFCD,垂足為點F,BFAC交于點C,BGE=ADE.

(1)如圖1,求證:AD=CD;

(2)如圖2,BHABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于ADE面積的2倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y1= (x>0)圖象上的任意一點,過點A作 AB∥x軸,交另一個比例函數(shù)y2= (k<0,x<0)的圖象于點B.

(1)若SAOB的面積等于3,則k是=;
(2)當(dāng)k=﹣8時,若點A的橫坐標(biāo)是1,求∠AOB的度數(shù);
(3)若不論點A在何處,反比例函數(shù)y2= (k<0,x<0)圖象上總存在一點D,使得四邊形AOBD為平行四邊形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖是用4個全等的長方形拼成的一個“回形”正方形,圖中陰影部分面積用2種方法表示可得一個等式,這個等式為_______

(2)(4xy)2=9,(4x+y)2=169,求xy的值.

查看答案和解析>>

同步練習(xí)冊答案