(2011貴州六盤水,23,14分)如圖8,已知:△ABC是⊙O的內(nèi)接三角形,D是OA延長線上的一點,連接DC,且∠B=∠D=300
(1)判斷直線CD與⊙O的位置關系,并說明理由。
(2)若AC=6,求圖中弓形(即陰影部分)的面積。
解:(1)直線CD是⊙O的切線
理由如下:
連接OC
∵∠AOC、∠ABC分別是AC所對的圓心角、圓周角
∴∠AOC=2∠ABC=2×300=600
∴∠D+∠AOC=300+600=900
∴∠DCO=900
∴CD是⊙O的切
(2)過O作OE⊥AC,點E為垂足

∵OA=OC,∠ AOC=600
∴△AOC是等邊三角形
∴OA=OC=AC=6,∠OAC=600
在Rt△AOE中
OE=OA·sin∠OAC=6·sin600


練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·丹東)(本題10分)已知:如圖,在中,,以AC為直徑作⊙O交AB于點D.
(1)若,求線段BD的長.
(2)若點E為線段BC的中點,連接DE.      求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過
點D作EF⊥AC于點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)當∠BAC=60º時,DE與DF有何數(shù)量關系?請說明理由;
(3)當AB=5,BC=6時,求tan∠BAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011?德州)母線長為2,底面圓的半徑為1的圓錐的側(cè)面積為  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·湖州)(本小題8分)
如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2。
⑴求OE和CD的長;
⑵求圖中陰影部隊的面積。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011貴州安順,18,4分)如圖,在RtABC中,∠C=90°,CA=CB=4,分別以AB、C為圓心,以AC為半徑畫弧,三條弧與邊AB所圍成的陰影部分的面積是          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(11·漳州)如圖是一個圓錐形型的紙杯的側(cè)面展開圖,已知圓錐底面半徑為5 cm,母線長為15cm,那么紙杯的側(cè)面積為_  ▲  cm2.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,∠A是⊙O的圓周角,∠A=60°,則∠OBC的度數(shù)為    度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,BD為⊙O的直徑,ABAC,ADBCE,AE=2,ED=4.

(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DBF,使BFOB,連接FA,試判斷直線FA與⊙O的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案