【題目】下列說(shuō)法中:①角平分線上的點(diǎn)到角兩邊距離相等;②等腰三角形至少有1條對(duì)稱軸,至多有3條對(duì)稱軸;③等腰梯形對(duì)角線相等;④全等的兩個(gè)圖形一定成軸對(duì)稱.其中正確有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形兩邊的長(zhǎng)分別是8和6,第三邊的長(zhǎng)是方程x2﹣12x+20=0的一個(gè)實(shí)數(shù)根,則三角形的周長(zhǎng)是( )
A.24
B.26或16
C.26
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次地震期間,為了緊急安置60名地震災(zāi)民,需要搭建可容納6人或4人的帳篷,若所搭建的帳篷恰好(即不多不少)能容納這60名災(zāi)民,則不同的搭建方案有 種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在邊BC上,過(guò)點(diǎn)O分別作OE⊥AB,OF⊥AC,E,F分別是垂足.
判斷與的關(guān)系______;
(2)如圖2,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC一定成立嗎?請(qǐng)畫圖表示,不需證明.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式中,不一定成立的是( 。
A.3m2﹣2m2=m2B.m2m3=m5C.(m+1)2=m2+1D.(m2)3=m6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線的方程C1: (m>0)與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若拋物線C1過(guò)點(diǎn)M(2, 2),求實(shí)數(shù)m的值;
(2)在(1)的條件下,求△BCE的面積;
(3)在(1)的條件下,在拋物線的對(duì)稱軸上找一點(diǎn)H,使得BH+EH最小,求出點(diǎn)H的坐標(biāo);
(4)在第四象限內(nèi),拋物線C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與△BCE相似?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知銳角△ABC中,分別以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連結(jié)BE、CD,則線段BE與線段CD的數(shù)量關(guān)系是______.
(2)如圖2,已知銳角△ABC中,分別以AB、AC為邊向△ABC外作等腰直角△ABD和等腰直角△ACE,連結(jié)BE、CD,猜想線段BE與線段CD的有什么位置關(guān)系?并證明你的猜想.
(3)如圖3,已知銳角△ABC中,分別以AB、AC為邊向△ABC外作正方形ABDE和正方形ACFG,連接CE、BG,請(qǐng)寫出線段CE與線段BG有什么關(guān)系?不需證明.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過(guò)點(diǎn)C作AE 的垂線CF,垂足為F,過(guò)點(diǎn)B作BD⊥BC,交CF的延長(zhǎng)線于點(diǎn)D.
(1)求證:AE=CD.
(2)若AC=12 cm,求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com