如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.

解:(1)把點A(-1,0)、B(3,0)的坐標代入解析式中,得:

解得;
∴解析式為y=-x2+2x+3,
對稱軸為直線x=1;

(2)∵點A(-1,0)、B(3,0)、C(0,3),
∴OB=OC=3,OA=1,,AB=4,
∠OCB=∠OBC=45°,tan∠CAO=3;
若△OBD∽△ABC,則,
,過D作DE⊥x軸于點E,
,,

若△DBO∽△ABC,則
,,過D作DE⊥x軸于點E,
,OE=OB-BE=OB-DE=3-2=1,
∴D(1,2)
或D(1,2);

(3)如圖,①當直線MN在x軸上方時
設圓的半徑為r(r>0),則N(r+1,r),
代入拋物線的表達式,
解得
②當直線MN在x軸下方時,
設圓的半徑為R(R>0),則N(R+1,-R),
代入拋物線的表達式,
解得
∴圓的半徑為
分析:(1)將A、B的坐標代入拋物線的解析式中,通過聯(lián)立方程組即可得到待定系數(shù)的值,從而確定該拋物線的解析式和對稱軸方程;
(2)易知A、B、C的坐標,即可得到AB、BC、OB的長,若以B,O,D為頂點的三角形與△BAC相似,則有兩種情況:△OBD∽△ABC或△DBO∽△ABC,根據(jù)相似三角形所得比例線段,即可求得BD的長,易知△OBC是等腰直角三角形,那么△OBD也是等腰直角三角形,即可由BD的長求出DE、BE的值,從而確定點D的坐標;
(3)由于以MN為直徑的圓與x軸相切,那么圓心的縱坐標的絕對值等于MN的一半也就是圓的半徑,所以可利用拋物線的對稱軸和圓的半徑表示出M或N的坐標,然后代入拋物線的解析式中,即可求得此圓的半徑長.
點評:此題是二次函數(shù)的綜合題,涉及到二次函數(shù)解析式的確定、相似三角形的判定和性質、直線與圓的位置關系等知識,同時還應用了分類討論的數(shù)學思想,綜合性強,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
5
2
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關系式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案