【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個.
A.2B.3C.4D.5
【答案】A
【解析】
根據(jù)全等三角形的對應(yīng)角相等得出∠ABD=∠EBD,即可判斷①;先由全等三角形的對應(yīng)邊相等得出BD=CD,BE=CE,再根據(jù)等腰三角形三線合一的性質(zhì)得出DE⊥BC,則∠BED=90°,再根據(jù)全等三角形的對應(yīng)角相等得出∠A=∠BED=90°,即可判斷②;根據(jù)全等三角形的對應(yīng)角相等得出∠ABD=∠EBD,∠EBD=∠C,從而可判斷∠C,即可判斷③;根據(jù)全等三角形的對應(yīng)邊相等得出BE=CE,再根據(jù)三角形中線的定義即可判斷④;根據(jù)全等三角形的對應(yīng)邊相等得出BD=CD,但A、D、C可能不在同一直線上,所以AD+CD可能不等于AC.
解:①∵△ADB≌△EDB,
∴∠ABD=∠EBD,
∴BD是∠ABE的平分線,故①正確;
②∵△BDE≌△CDE,
∴BD=CD,BE=CE,
∴DE⊥BC,
∴∠BED=90°,
∵△ADB≌△EDB,
∴∠A=∠BED=90°,
∴AB⊥AD,
∵A、D、C可能不在同一直線上
∴AB可能不垂直于AC,故②不正確;
③∵△ADB≌△EDB,△BDE≌△CDE,
∴∠ABD=∠EBD,∠EBD=∠C,
∵∠A=90°
若A、D、C不在同一直線上,則∠ABD+∠EBD+∠C≠90°,
∴∠C≠30°,故③不正確;
④∵△BDE≌△CDE,
∴BE=CE,
∴線段DE是△BDC的中線,故④正確;
⑤∵△BDE≌△CDE,
∴BD=CD,
若A、D、C不在同一直線上,則AD+CD>AC,
∴AD+BD>AC,故⑤不正確.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有四張質(zhì)地均勻,大小完全相同的卡片,在其正面分別標有數(shù)字﹣1,﹣2,2,3,把卡片背面朝上洗勻,從中隨機抽出一張后,不放回,再從中隨機抽出一張,則兩次抽出的卡片所標數(shù)字之和為正數(shù)的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點E.
(1)在AD上求作點F,使點F到CD和BC的距離相等;
(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)判斷四邊形AECF是什么特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD⊥AB于點G,E是CD上一點,且BE=DE,延長EB至點P,連結(jié)CP,使PC=PE,延長BE與⊙O交于點F,連結(jié)BD,F(xiàn)D.
(1)求證:CD=BF;
(2)求證:PC是⊙O的切線;
(3)若tanF=,AG﹣BG=,求ED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點A按逆時針方向旋轉(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點D.
(1)求∠BDF的大小;
(2)求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12 米,BC=24 米,動點P從點A始沿邊AB向B以2 米/秒的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以4 米/秒的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設(shè)運動的時間為x 秒,四邊形APQC的面積為y 米2.
(1)求y與x之間的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)四邊形APQC的面積能否等于172米2.若能,求出運動的時間;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com