【題目】如圖,△ABC為任意三角形,以AB、AC為邊分別向外做等邊△ABD和等邊△ACE,連接CD、BE并相交于點(diǎn)P.求證:
(1)CD=BE;
(2)∠BPC=120°.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)得出AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根據(jù)SAS推出△DAC≌△BAE即可;
(2)根據(jù)全等三角形的性質(zhì)得出∠BEA=∠ACD,求出∠BPC=∠ECP+∠PEC=∠ACE+∠AEC,代入求出即可.
試題解析:(1)∵以AB、AC為邊分別向外做等邊△ABD和等邊△ACE,
∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
∴△DAC≌△BAE(SAS),
∴CD=BE;
(2)∵△DAC≌△BAE,
∴∠BEA=∠ACD,
∴∠BPC=∠ECP+∠PEC=∠DCA+∠ACE+∠PEC=∠BEA+∠ACE+∠PEC=∠ACE+∠AEC=60°+60°=120°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,AD=8,F是AB的中點(diǎn),過點(diǎn)F作FE⊥AD,垂足為E,將△AEF沿點(diǎn)A到點(diǎn)B的方向平移,得到△A′E′F′.
(1)求EF的長;
(2)設(shè)P,P′分別是EF,E′F′的中點(diǎn),當(dāng)點(diǎn)A′與點(diǎn)B重合時(shí),求證四邊形PP′CD是平行四邊形,并求出四邊形PP′CD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點(diǎn),交y軸于B點(diǎn),過A、B兩點(diǎn)的拋物線y=﹣x2+bx+c交x軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PG⊥AB于點(diǎn)G.求出△PFG的周長最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得△ABM與△ABD的面積相等?若存在,請求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB⊥BC,CD⊥BC,垂足分別為B、C,AB=BC,E為BC的中點(diǎn),且AE⊥BD于F,若CD=4cm,則AB的長度為( )
A. 4cm B. 8cm C. 9cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰直角△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)求證:△ADC≌△CEB;
(2)求證:AD+BE=DE;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),試問DE、AD、BE具有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于E.則結(jié)論:①BE=EC;②∠EDC=∠ECD;③∠B=∠BDE;④△ABC∽△ACD;⑤△DEC是等邊三角形.其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD的面積為100,P為邊CD上的任一點(diǎn),E,F分別為線段AP,BP的中點(diǎn),則圖中陰影部分的總面積為( )
A. 30B. 25C. 22.5D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】華為手機(jī)新款上市,十分暢銷.某經(jīng)銷商進(jìn)價(jià)每臺3000元,售價(jià)每臺4000 元.一月份銷量為512臺,二、三月份銷量持續(xù)走高,三月份銷量達(dá)到800臺.
(1)求二、三月份每月銷量的平均增長率;
(2)根據(jù)市場調(diào)查經(jīng)驗(yàn),四月份此款手機(jī)銷售情況將不再火爆而是趨于平穩(wěn).若售價(jià)不變,四月份銷量將與三月份持平;若降價(jià)促銷,每臺每降價(jià)50元,月銷量將增加100臺.要使四月份利潤達(dá)到90萬元,每臺應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);
(3)有一個點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位的速度在AB上向點(diǎn)B運(yùn)動,另一個點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com