【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點B,A,D在同一條直線上,M,N分別為BE,CD的中點.

(1)求證:△ABE≌ACD;

(2)判斷△AMN的形狀,并說明理由.

【答案】(1)證明見解析(2)△AMN為等腰三角形;理由見解析

【解析】

(1)由∠BAC=DAE,等式左右兩邊都加上∠CAE,得到一對角相等,再由AB=AC,AD=AE,利用SAS可得出三角形ABE與三角形ACD全等;
(2)由MN分別為BE,CD的中點,且BE=CD,可得出ME=ND,由△ABE與△ACD全等,對應(yīng)角∠AEB=ADC,利用SAS可得出△AME與△AND全等,利用全等三角形的對應(yīng)邊相等可得出AM=AN,即△AMN為等腰三角形.

(1)∵∠BAC=DAE,

∴∠BAC+CAE=DAE+CAE,即∠BAE=CAD,

ABEACD中,

∴△ABE≌△ACD(SAS);

(2)ABE≌△ACD

BE=CD,AEM=ADC,

M、N分別為BE、CD的中點,

ME=ND,

AEMADN中,,

∴△AEM≌△ADN(SAS),

AM=AN,

AMN為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數(shù)與碟子的高度的關(guān)系如下表:

碟子的個數(shù)

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當(dāng)桌子上放有x(個)碟子時,請寫出此時碟子的高度(用含x的式子表示);

2)分別從三個方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸l為x=﹣1.

(1)求拋物線的解析式并寫出其頂點坐標(biāo);

(2)若動點P在第二象限內(nèi)的拋物線上,動點N在對稱軸l上.

當(dāng)PANA,且PA=NA時,求此時點P的坐標(biāo);

當(dāng)四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以長方形OABC的邊OC,OA所在直線為x軸、y軸,建立平面直角坐 標(biāo)系.已知AO=13,AB=5,點E在線段OC上,以直線AE為軸,把△OAE翻折,點O的對應(yīng)點D恰好落在線段BC.則點E的坐標(biāo)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滿足下列條件的三角形中,不是直角三角形的是( )

A.A-B=CB.A:∠B:∠C=3 4 7

C.A=2B=3CD.A=9°,∠B=81°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:若在一個兩位正整數(shù)N的個位數(shù)字與十位數(shù)字之間添上數(shù)字6,組成一個新的三位數(shù),我們稱這個三位數(shù)為N至善數(shù),如34至善數(shù)為364”;若將一個兩位正整數(shù)M6后得到一個新數(shù),我們稱這個新數(shù)為M明德數(shù),如34明德數(shù)為40”

130至善數(shù)   ,明德數(shù)   

2)求證:對任意一個兩位正整數(shù)A,其至善數(shù)明德數(shù)之差能被9整除;

3)若一個兩位正整數(shù)B的明德數(shù)的各位數(shù)字之和是B的至善數(shù)各位數(shù)字之和的一半,求B的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某農(nóng)場要建一個長方形的養(yǎng)雞場,雞場的一邊靠墻(墻長米),用木欄圍成三個大小相等的長方形,木欄總長24米,總面積為32平方米.

1)若墻長米,求AB、BC的長.

2)若米的墻長對雞舍的長和寬是否有影響?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab,c是等腰三角形ABC的三條邊,其中a=2,如果b,c是關(guān)于x的一元二次方程的兩個根,則m_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°.E、F分別是BC、CD上的點.且∠EAF60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.

解法探究:小明同學(xué)通過思考,得到了如下的解決方法.

延長FD到點G,使DGBE,連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,從而可得結(jié)論.

1)請先寫出小明得出的結(jié)論,并在小明的解決方法的提示下,寫出所得結(jié)論的理由.

解:線段BE、EFFD之間的數(shù)量關(guān)系是: .

理由:延長FD到點G,使DGBE,連結(jié)AG.(以下過程請同學(xué)們完整解答)

2)拓展延伸:

如圖②,在四邊形ABCD中,ABAD,若∠B+D180°E、F分別是BC、CD上的點.且∠EAFBAD,則(1)中的結(jié)論是否仍然成立?若成立,請再把結(jié)論寫一寫;若不成立,請直接寫出你認(rèn)為成立的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案