【題目】已知:在中,,垂足為點(diǎn)H,若,,則______
【答案】或35
【解析】
分析題意,可知本題需分兩種情況進(jìn)行討論,△ABC為銳角三角形和△ABC為直角三角形;當(dāng)△ABC為鈍角三角形時(shí),過A作BC的垂線,交CB的延長(zhǎng)線于點(diǎn)H,由AB+BH=CH,不難得出AB=BC,接下來,再利用三角形外角的性質(zhì),可得∠BAC的度數(shù);當(dāng)△ABC為銳角三角形時(shí),在HC上取D點(diǎn),使BH=HD,連接AD,再結(jié)合AB+BH=CH,不難得出AD=DC,接下來,再利用三角形外角的性質(zhì),可得∠DAC的度數(shù);由∠ABH=70°,利用等腰三角形的性質(zhì)可得出∠BAD的度數(shù),結(jié)合上述所得,可得∠BAC的度數(shù).
根據(jù)題意畫出圖形,
當(dāng)△ABC為鈍角三角形時(shí),過A作BC的垂線,交CB的延長(zhǎng)線于點(diǎn)H,
∵AB+BH=CH,HB+BC=CH,
∴AB=BC,
∴∠BAC=∠ACB.
∵∠ABH=70°,
∴∠BAC=∠ACB=35°.
當(dāng)△ABC為銳角三角形時(shí),在HC上取D點(diǎn),使BH=HD,連接AD,
∵AB+BH=HC=HD+DC,BH=HD,
∴AB=DC.
∵AH⊥BD,BH=HD,
∴AB=AD,
∴∠B=∠ADH=70°,
∴∠BAD=40°.
∵AB=DC,AB=AD,
∴AD=CD,
∴∠C=∠DAC,
∴∠ADH=∠C+∠DAC=2∠C,
∴∠DAC=35°,
∴∠BAC=∠BAD+∠DAC=40°+35°=75°.
所以,35°或75°
故答案為:35°或75°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校招聘一名數(shù)學(xué)老師,對(duì)應(yīng)聘者分別進(jìn)行了教學(xué)能力、科研能力和組織能力三項(xiàng)測(cè)試,其中甲、乙兩名應(yīng)聘者的成績(jī)?nèi)缬冶恚海▎挝唬悍郑?/span>
教學(xué)能力 | 科研能力 | 組織能力 | |
甲 | 81 | 85 | 86 |
乙 | 92 | 80 | 74 |
(1)若根據(jù)三項(xiàng)測(cè)試的平均成績(jī)?cè)诩、乙兩人中錄用一人,那么誰(shuí)將被錄用?
(2)根據(jù)實(shí)際需要,學(xué)校將教學(xué)、科研和組織能力三項(xiàng)測(cè)試得分按 5:3:2 的比確定每人的最后成績(jī),若按此成績(jī)?cè)诩住⒁覂扇酥袖浻靡蝗,誰(shuí)將被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在活動(dòng)課上,小明和小紅合作用一副三角板來測(cè)量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測(cè)得旗桿頂端M仰角為45°;小紅眼睛與地面的距離(CD)是1.5m,用同樣的方法測(cè)得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點(diǎn)B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): , ,結(jié)果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC=2 ,E為BC邊上一點(diǎn),BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點(diǎn)恰好落在對(duì)角線AC上的B′處,則AB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度一半的長(zhǎng)為半徑作弧,相交于點(diǎn)E,F(xiàn),過點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連結(jié)CD,則CD的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校標(biāo)準(zhǔn)化建設(shè)需購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需3.5萬元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.
(1)求每臺(tái)電腦和每臺(tái)電子白板各多少萬元;
(2)根據(jù)學(xué)校需要,實(shí)際購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用30萬元,請(qǐng)你通過計(jì)算求學(xué)校購(gòu)買了電腦和電子白板各多少臺(tái).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com