【題目】某工廠甲、乙兩名工人參加操作技能培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機(jī)抽取5次,記錄如下:

85

88

84

85

83

83

87

84

86

85

1)請你分別計(jì)算這兩組數(shù)據(jù)的平均數(shù);

2)現(xiàn)要從中選派一人參加操作技能比賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪名工人參加合適?請說明理由.

【答案】1)甲平均數(shù): 85,乙平均數(shù): 85;(2)選派乙工人參加合適,理由見解析;

【解析】

(1)根據(jù)平均數(shù)的概念列式計(jì)算即可得解;
(2)求出兩人測試成績的方差,然后根據(jù)方差越小越穩(wěn)定選擇合適人選.

解:(1)甲平均數(shù):×85+88+84+85+83)=×42585,

乙平均數(shù):×83+87+84+86+85)=×42585

2)選派乙工人參加合適.

理由如下:S2×[85852+88852+84852+85852+83852],

×0+9+1+0+4),

2.8,

S2×[83852+87852+84852+86852+85852],

×4+4+1+1+0),

2

2.82,

S2S2

∴乙成績更穩(wěn)定,

∴選派乙工人參加合適.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A-2,5),B-3,3),C1,2),點(diǎn)Pm,n)是三角形ABC內(nèi)任意一點(diǎn),三角形經(jīng)過平移后得到三角形A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1m+6,n-2).

1)直接寫出平移后點(diǎn)A1、B1C1的坐標(biāo)分別為

2)畫出三角形ABC平移后的三角形A1B1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC=4,ABC=67.5°,ABD和△ABC關(guān)于AB所在的直線對稱,點(diǎn)M為邊AC上的一個(gè)動點(diǎn)(重合),點(diǎn)M關(guān)于AB所在直線的對稱點(diǎn)為N,CMN的面積為S.

(1)求∠CAD的度數(shù);

(2)設(shè)CM=x,求Sx的函數(shù)表達(dá)式,并求x為何值時(shí)S的值最大?

(3)S的值最大時(shí),過點(diǎn)CECACAB的延長線于點(diǎn)E,連接EN(如圖2),P為線段EN上一點(diǎn),Q為平面內(nèi)一點(diǎn),當(dāng)以M,N,P,Q為頂點(diǎn)的四邊形是菱形時(shí),請直接寫出所有滿足條件NP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿上的C處引拉線CECF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB1.5米,求拉線CE的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn) A﹣20),B20),C0,2,點(diǎn) D,點(diǎn)E分別是 AC,BC的中點(diǎn),將CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

1如圖,若 α90°,當(dāng) AD′∥CE時(shí),求α的大。

2如圖,若 90°α180°,當(dāng)點(diǎn) D落在線段 BE上時(shí),求 sin∠CBE的值;

3若直線AD與直線BE相交于點(diǎn)P,求點(diǎn)P的橫坐標(biāo)m的取值范圍直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與直線相交于點(diǎn),直線、分別交軸于兩點(diǎn),矩形的頂點(diǎn)分別在、上,頂點(diǎn)都在軸上,且點(diǎn)點(diǎn)重合,那么 __________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:點(diǎn)E∠AOB的平分線上一點(diǎn),ED⊥OA,EC⊥OB,垂足分別為C、D.

求證:(1)OC=OD;

(2)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,E,F(xiàn)分別在邊AD,AB上,連接CE,CF,且滿足∠DCE=∠BCF,BF=DE,∠A=60°,連接EF.

(1)若EF=2,求AEF的面積;

(2)如圖2,取CE的中點(diǎn)P,連接DP,PF,DF,求證:DP⊥PF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點(diǎn),CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=18 m,小明和小華的身高都是1.6m,同一時(shí)刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m1m,那么塔高AB為( 。

A. 24m B. 22m C. 20m D. 18m

查看答案和解析>>

同步練習(xí)冊答案