【題目】潛山市某村辦工廠,今年前5個(gè)月生產(chǎn)某種產(chǎn)品的總量C(件)關(guān)于時(shí)間t(月)的函數(shù)圖象如圖所示,則該廠對這種產(chǎn)品來說( 

A. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月每月生產(chǎn)總量逐月減少

B. 1月至3月每月生產(chǎn)總量逐月增加,4,5兩月每月生產(chǎn)量與3月持平

C. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月均停止生產(chǎn)

D. 1月至3月每月生產(chǎn)總量不變,4、5兩月均停止生產(chǎn)

【答案】B

【解析】

試題仔細(xì)分析函數(shù)圖象的特征,根據(jù)ct的變化規(guī)律即可求出答案.

解:由圖中可以看出,函數(shù)圖象在1月至3月,圖象由低到高,說明隨著月份的增加,產(chǎn)量不斷提高,從3月份開始,函數(shù)圖象的高度不再變化,說明產(chǎn)量不再變化,和3月份是持平的.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PQMN,點(diǎn)A在直線PQ上,點(diǎn)CD在直線MN上,連接ACAD,∠PAC=50°,∠ADC=30°,AE平分PADCE平分ACD,AECE相交于點(diǎn)E

(1)求AEC的度數(shù);

(2)若將圖中的線段AD沿MN向右平移到A1D1如圖所示位置,此時(shí)A1E平分AA1D1

CE平分ACD1,A1ECE相交于E,∠PAC=50°,∠A1D1C=30°,求A1EC的度數(shù);

(3)若將圖中的線段AD沿MN向左平移到A1D1如圖所示位置,其他條件與(2)相同,求此時(shí)A1EC的度數(shù)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機(jī)從廠家購進(jìn)了A、B兩種型號家用凈水器共160,A型號家用凈水器進(jìn)價(jià)是150/,B型號家用凈水器進(jìn)價(jià)是350/,購進(jìn)兩種型號的家用凈水器共用去36000

1)求A、B兩種型號家用凈水器各購進(jìn)了多少臺;

2)為使每臺B型號家用凈水器的毛利潤是A型號的2且保證售完這160臺家用凈水器的毛利潤不低于11000,求每臺A型號家用凈水器的售價(jià)至少是多少元?(注毛利潤=售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示,AB//CD,點(diǎn)EAD的延長線上,∠EDC與∠B互為補(bǔ)角.

(1)問AD,BC是否平行?請說明理由;

(2)如果∠EDC=72°,∠1=∠2=2∠CAB,求∠CAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣ |+ sin45°﹣( 1 (π﹣3)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人民公園劃出一塊矩形區(qū)域,用以栽植鮮花.
(1)經(jīng)測量,該矩形區(qū)域的周長是72m,面積為320m2 , 請求出該區(qū)域的長與寬;
(2)公園管理處曾設(shè)想使矩形的周長和面積分別為(1)中區(qū)域的周長和面積的一半,你認(rèn)為此設(shè)想合理嗎?如果此設(shè)想合理,請求出其長和寬;如果不合理,請說明理由,并求出在(1)中周長減半的條件下矩形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,P、Q分別是邊AB、BC上的兩個(gè)動點(diǎn),P、Q同時(shí)分別從A、B出發(fā),點(diǎn)P沿AB向B運(yùn)動;點(diǎn)Q沿BC向C運(yùn)動,速度都是1個(gè)單位長度/秒.運(yùn)動時(shí)間為t秒.

(1)連結(jié)AQ、DP相交于點(diǎn)F,求證:AQ⊥DP;
(2)當(dāng)正方形邊長為4,而t=3時(shí),求tan∠QDF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與y軸交于點(diǎn)C,點(diǎn)D(0,1),點(diǎn)P是拋物線上的動點(diǎn).若△PCD是以CD為底的等腰三角形,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為(
A.2
B.8
C.2
D.2

查看答案和解析>>

同步練習(xí)冊答案