【題目】如圖,正方形ABCD的邊長為2,點E.F分別在邊AD、CD上,∠EBF=45°,則△EDF

的周長等于_______。

【答案】4

【解析】∵四邊形ABCD為正方形,

∴AB=BC,∠BAE=∠C=90

∴把△ABE繞點A順時針旋轉(zhuǎn)90可得到△BCG,如圖,

∴BG=AB,CG=AE,∠GBE=90,∠BAE=∠C=90,

∴點GDC的延長線上,

∵∠EBF=45,

∴∠FBG=∠EBG∠EBF=45,

∴∠FBG=∠FBE,

在△FBG和△EBF中,

BF=BF,∠FBG=∠FBE,BG=BE,

∴△FBG≌△EBF(SAS),

∴FG=EF,

FG=FC+CG=CF+AE,

∴EF=CF+AE,

∴△DEF的周長=DF+DE+CF+AE=CD+AD=2+2=4

故答案為:4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某次大型活動,組委會啟用無人機航拍活動過程,在操控無人機時應根據(jù)現(xiàn)場狀況調(diào)節(jié)高度,已知無人機在上升和下降過程中速度相同,設(shè)無人機的飛行高度h(米)與操控無人機的時間t(分鐘)之間的關(guān)系如圖中的實線所示,根據(jù)圖象回答下列問題:

1)圖中的自變量是______,因變量是______

2)無人機在75米高的上空停留的時間是______分鐘;

3)在上升或下降過程中,無人機的速度______為米/分;

4)圖中a表示的數(shù)是______;b表示的數(shù)是______;

5)圖中點A表示______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,的三個頂點均在格點上,請按要求完成下列各題:

1)畫線段,且使,連接;

2)線段的長為________的長為________,的長為________

3________三角形,四邊形的面積是________

4)若點的中點,,則的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖表示甲騎摩托車和乙駕駛汽車沿相同的路線行駛90千米,由A地到B地時,行駛的路程y(千米)與經(jīng)過的時間x(小時)之間的關(guān)系。請根據(jù)圖象填空:

(1)摩托車的速度為_____千米/小時;汽車的速度為_____千米/小時;

(2)汽車比摩托車早_____小時到達B地。

(3)在汽車出發(fā)后幾小時,汽車和摩托車相遇?說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設(shè)它們的運動時間為t(單 位:s)(0<t<)。

(1)如圖1,連接DQ平分∠BDC時,t的值為      ;

(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;

(3)請你繼續(xù)進行探究,并解答下列問題:

①證明:在運動過程中,點O始終在QM所在直線的左側(cè);

②如圖3,在運動過程中,當QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓弧().

(1)用直尺和圓規(guī)作出所在圓的圓心;(要求保留作圖痕跡,不寫作法)

(2)的中點的距離為m,m,求所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的中點,以為直徑的⊙的邊于點、、.

(1)求證:四邊形是平行四邊形;

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD內(nèi)有一點P滿足AP=AB,PB=PC,連接ACPD

求證:(1APB≌△DPC;(2BAP=2PAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標為(6,n)。線段OA=5,E為x軸上一點,且.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。

查看答案和解析>>

同步練習冊答案