【題目】如圖,ABC內(nèi)接于⊙OAB為⊙O的直徑,BC=3AB=5DE分別是邊AB、BC上的兩個動點(不與端點A、B、C重合),將BDE沿DE折疊,點B的對應點B′恰好落在線段AC上(包含端點A、C),若ADB′為等腰三角形,則AD的長為___

【答案】

【解析】

根據(jù)圓周角定理得到∠C=90°,根據(jù)勾股定理得到AC=4,根據(jù)折疊的性質得到BD=BD,BE=BE,①當AB=DB′時,設AB=DB=BD=x,根據(jù)相似三角形的性質得到AD=5-x=;;②當AD=DB′時,則AD=DB=BD=AB=;③當AD=AB′時,如圖2,過DDHACH,根據(jù)平行線分線段成比例定理即可得到結論.

∵AB⊙O的直徑,

∴∠C=90°,

∵BC=3,AB=5,

∴AC=4,

△BDE沿DE折疊,點B的對應點B′恰好落在線段AC上,

∴BD=B′DBE=B′E,

△ADB′為等腰三角形,

AB′=DB′時,設AB′=DB′=BD=x,

AD=5-x

如圖1,過B′B′F⊥ADF,

AF=DF=AD

∵∠A=∠A,∠AFB′=∠C=90°,

∴△AFB′∽△ACB,

=,

=,

解得:x=,

∴AD=5-x=;

AD=DB′時,則AD=DB′=BD=AB=

AD=AB′時,如圖2,過DDH⊥ACH,

∴DH∥BC

==,

AD=5m,

∴DH=3m,AH=4m,

∴DB′=BD=5-5mHB′=5m-4m=m,

=+

=+,

∴m=,m=(不合題意舍去),

∴AD=,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在矩形ABCD中,AB=6,BC=10PAD邊上一動點(不含端點A,D),連接PC,EAB邊上一點,設BE=a,若存在唯一點P,使∠EPC=90°,則a的值是(  )

A.B.C.3D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關系式.

(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】可以用如下方法求方程x22x20的實數(shù)根的范圍:利用函數(shù)yx22x2的圖象可知,當x0時,y0,當x=-1時,y0,所以方程有一個根在-10之間.

1)參考上面的方法,求方程x22x20的另一個根在哪兩個連續(xù)整數(shù)之間;

2)若方程x22xc0有一個根在01之間,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進一批單價為8元的商品,如果按每件10元出售,那么每天可銷售100件,經(jīng)調查發(fā)現(xiàn),這種商品的銷售單價每提高1元,其銷售量相應減少10.

1)求銷售量件與銷售單價元之間的關系式;

2)當銷售單價定為多少,才能使每天所獲銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD折疊,點C落在點C′的位置,BC′AD于點G

   

1)求證:BG=DG;

2)求C′G的長;

3)如圖2,再折疊一次,使點DA重合,折痕ENADM,求EM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓與實驗樓的水平間距米,在實驗樓頂部點測得教學樓頂部點的仰角是,底部點的俯角是,則教學樓的高度是____米(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:,其中|x|≤1,且x為整數(shù).

小海同學的解法如下:

解:原式=

=(x12x2+3

x22x1x2+3

=﹣2x+2

x=﹣1時,

原式=﹣(﹣1+2

2+24

請指出他解答過程中的錯誤(寫出相應的序號,多寫不給分),并寫出正確的解答過程.

查看答案和解析>>

同步練習冊答案