【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.

(1)求證:∠ABC=2∠CAF;

(2)若AC=2,CE:EB=1:4,求CE的長.

【答案】(1)證明見試題解析;(2CE=2,AF=

【解析】試題分析:(1)首先連接BD,由AB為直徑,可得∠ADB=90°,又由AF⊙O的切線,易證得∠CAF=∠ABD.然后由BA=BC,證得:∠ABC=2∠CAF;

2)首先連接AE,設(shè)CE=x,由勾股定理可得方程:(22=x2+3x2求得答案.

試題解析:(1)證明:如圖,連接BD∵AB⊙O的直徑,∴∠ADB=90°∴∠DAB+∠ABD=90°∵AF⊙O的切線,∴∠FAB=90°,即∠DAB+∠CAF=90°∴∠CAF=∠ABD∵BA=BC∠ADB=90°,

∴∠ABC=2∠ABD∴∠ABC=2∠CAF

2)如圖,連接AE,∴∠AEB=90°,設(shè)CE=x,∵CEEB=14

∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2

即(22=x2+3x2,x=2CE=2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明設(shè)計了一個問題,分兩步完成:

(1)已知關(guān)于x的一元一次方程,請畫出數(shù)軸,并在數(shù)軸上標注a對應(yīng)的點,分別記作A,B;

(2)在第1問的條件下,在數(shù)軸上另有一點C對應(yīng)的數(shù)為y,CA的距離是CB的距離的5,C在表示5的點的左側(cè),y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(5x2y12)2|3x2y6|0,則2x4y__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】冬至過后,晝夜溫差逐漸加大,山城的市民們已然感受到了深冬的寒意.在還未普遍使用地暖供暖設(shè)備的山城,小型電取暖器仍然深受市民的青睞.某格力專賣店銷售壁掛式電暖器和鹵素/石英式取暖器(俗稱 “小太陽”),其中壁掛式電暖器的售價是“小太陽”售價的5倍還多100元,2016年12月份壁掛式電暖器和“小太陽”共銷售500臺,壁掛式電暖器與“小太陽”銷量之比是4∶1,銷售總收入為58.6萬元.

(1)分別求出每臺壁掛式電暖器和“小太陽”的售價;

(2)隨著“元旦、春節(jié)”雙節(jié)的來臨和氣溫的回升,銷售進入淡季,2017年1月份,壁掛式電暖器的售價比2016年12月下調(diào)了4m﹪,根據(jù)經(jīng)驗銷售量將比2016年12月下滑6m﹪,而“小太陽”的銷售量和售價都維持不變,預(yù)計銷售總收入將下降到16.04萬元,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是1個直角三角形和2個小正方形,直角三角形的三條邊長分別是a、bc,其中a、b是直角邊.2個小正方形的邊長分別是a、b

14個完全一樣的直角三角形和2個小正方形構(gòu)成一個大正方形(如圖②).用兩種不同的方法列代數(shù)式表示圖②中的大正方形面積:方法一_______;方法二:_____;

2觀察圖②,試寫出(a+b)2,a2,2ab,b2這四個代數(shù)式之間的等量關(guān)系,為___ ____;

3利用你發(fā)現(xiàn)的結(jié)論,求:9922+16×992+64的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知k>0,則函數(shù)y=-kxk的圖象經(jīng)過第________象限(  )

A. 一、二、三 B. 二、三、四 C. 一、二、四 D. 一、三、四

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為F,則EF的長為(
A.1
B.
C.4﹣2
D.3 ﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運輸公司用10輛相同的汽車將一批蘋果運到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.

(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)若運送三種蘋果所獲利潤的情況如下表所示:

設(shè)此次運輸?shù)睦麧櫈?/span>W(萬元),問:如何安排車輛分配方案才能使運輸利潤W最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)y= (k≠0),下列說法不正確的是(
A.它的圖像分布在第一、三象限
B.點(k,k)在它的圖像上
C.它的圖像關(guān)于原點對稱
D.在每個象限內(nèi)y隨x的增大而增大

查看答案和解析>>

同步練習冊答案