如圖所示,梯形ABCD中,AB∥CD,∠ADC=60°,∠BCD=30°,以AD,AB,BC向形外作正方形,它們面積分別為S1,S2,S3,若DC=2AB,S2=27,求,

【答案】分析:作輔助線AA′⊥CD于A′,BB′⊥CD于B′,根據(jù)正方形的面積求邊長,再由直角三角形的邊之間的關(guān)系和勾股定理求解.
解答:解:如圖所示,作輔助線AA′⊥CD于A′,BB′⊥CD于B′,
∵S2=27,DC=2AB,
∴AB==3,
而A′D+B′C=3=AB.
AD=,BC=,BB′=
∴B′C==
+=3
又∵AA′=BB′,
=
解①②得=,==
點評:此題綜合性較強,涉及到梯形、三角形,正方形的有關(guān)內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,BD,CE分別為∠ABC,∠ACB的平分線.
求證:四邊形EBCD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=BC=4
3
,求梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,DE∥BC,△ADE和梯形DBCE的面積相等,則AD:DB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解

(1)如圖①,△ABC中,D是BC中點,連接AD,直接回答S△ABD與S△ADC相等嗎?
相等
相等
(S表示面積);
應(yīng)用拓展
(2)如圖②,已知梯形ABCD中,AD∥BC,E是AB的中點,連接DE、EC,試?yán)蒙项}得到的結(jié)論說明S△DEC=S△ADE+S△EBC
解決問題
(3)現(xiàn)有一塊如圖③所示的梯形試驗田,想種兩種農(nóng)作物做對比實驗,用一條過D點的直線,將這塊試驗田分割成面積相等的兩塊,畫出這條直線,并簡單說明另一點的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,直角梯形ABCD中,動點P從B點出發(fā),由B-C-D-A沿梯形的邊運動,設(shè)點P運動的路程為x,△ABP的面積為y,函數(shù)圖象如圖②所示,則△ABC面積為
16
16

查看答案和解析>>

同步練習(xí)冊答案