【題目】(1)計(jì)算4(x+1)2﹣(2x﹣5)(2x+5).
(2)解方程:
【答案】(1)8x+29(2)x=﹣4
【解析】試題分析:(1)先利用完全平方公式、平方差公式進(jìn)行展開,然后再合并同類項(xiàng)即可;
(2)方程兩邊先同乘最簡公分母,化為整式方程,解方程后進(jìn)行檢驗(yàn)即可得.
試題解析:(1)原式=4(x2+2x+1)﹣(4x2﹣25)=4x2+8x+4﹣4x2+25=8x+29;
(2)方程兩邊乘(x+3)(x﹣3)得:3+x(x+3)=(x+3)(x﹣3),
整理得:3+x2+3x=x2﹣9,
移項(xiàng)得:x2+3x﹣x2=﹣9﹣3,
合并得:3x=﹣12,
解得:x=﹣4,
檢驗(yàn):當(dāng)x=﹣4時(shí),(x+3)(x﹣3)≠0,
則原方程的解是x=﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a6+a3=a9
B.a2a3=a5
C.(2a)3=6a3
D.(a﹣b)2=a2﹣b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請(qǐng)直接寫出點(diǎn)B關(guān)于點(diǎn)A對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(1,﹣2)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是( 。
A. (﹣1,﹣2) B. (1,2) C. (﹣1,2) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A(2,3),B(3,1),C(﹣2,﹣2)三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)直接寫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2的各點(diǎn)坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2x+a=0有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用a、b、c作三角形的三邊,其中不能構(gòu)成直角三角形的是( 。
A. a2=(b+c)(b﹣c) B. a:b:c=1: :2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察發(fā)現(xiàn):四邊形ABCD是正方形,點(diǎn)E是直線BC上的動(dòng)點(diǎn),連結(jié)AE,過點(diǎn)A作AF⊥AE交直線CD于F.當(dāng)點(diǎn)E位于點(diǎn)B的左側(cè)時(shí),如圖(1).觀察線段AB.BE.CF之間有何數(shù)量關(guān)系?請(qǐng)直接寫出線段AB.BE.CF之間的數(shù)量關(guān)系.
(2)拓展探究:當(dāng)點(diǎn)E位于點(diǎn)B的右側(cè)時(shí),如圖(2),線段AB.BE.CF之間有何數(shù)量關(guān)系?并說明理由.
(3)遷移應(yīng)用:如圖(3),正方形ABCD的邊長為2cm時(shí),線段CM=3cm,直接寫出線段CH的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com