【題目】如圖,已知鈍角.
(1)過鈍角頂點(diǎn)作,交于點(diǎn)(使用直尺和圓規(guī),不寫作法,保留作圖痕跡);
(2)若,,,求的長(zhǎng).
【答案】(1)見解析;(2)10
【解析】
(1)以B為圓心,任意長(zhǎng)度為半徑作弧,交AC于M、N兩點(diǎn);然后分別以M、N為圓心,大于MN為半徑作弧,兩弧交于點(diǎn)E,連接BE交AC于點(diǎn)D.由作圖可知:BD垂直平分MN,即BD⊥AC;
(2)利用銳角三角函數(shù)即可求出BD,再利用銳角三角函數(shù)即可求出AB.
解:(1)以B為圓心,任意長(zhǎng)度為半徑作弧,交AC于M、N兩點(diǎn);然后分別以M、N為圓心,大于MN為半徑作弧,兩弧交于點(diǎn)E,連接BE交AC于點(diǎn)D.由作圖可知:BD垂直平分MN,即BD⊥AC,如下圖所示,BD即為所求;
(2)解:在中,
在中,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在綜合實(shí)踐活動(dòng)中對(duì)本地的一座古塔進(jìn)行了測(cè)量.如圖,他在山坡坡腳P處測(cè)得古塔頂端M的仰角為60°,沿山坡向上走25m到達(dá)D處,測(cè)得古塔頂端M的仰角為30°.已知山坡坡度i=3:4,即tanθ=,請(qǐng)你幫助小明計(jì)算古塔的高度ME.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過8min時(shí),材料溫度降為600℃.煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí),溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作.那么鍛造的操作時(shí)間有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),連接CD,過E作EF∥DC交BC的延長(zhǎng)線于F.
(1)證明:四邊形CDEF是平行四邊形;
(2)若四邊形CDEF的周長(zhǎng)是25cm,AC的長(zhǎng)為5cm,求線段AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC頂點(diǎn)的坐標(biāo)分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).
(1)以點(diǎn)C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且ABC位于點(diǎn)C的異側(cè),并表示出點(diǎn)A1的坐標(biāo).
(2)作出△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后的圖形△A2B2C.
(3)在(2)的條件下求出點(diǎn)B經(jīng)過的路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過舉國(guó)上下抗擊新型冠狀病毒的斗爭(zhēng),疫情得到了有效控制,國(guó)內(nèi)各大企業(yè)在2月9日后紛紛進(jìn)入復(fù)工狀態(tài).為了了解全國(guó)企業(yè)整體的復(fù)工情況,我們查找了截止到2020年3月1日全國(guó)部分省份的復(fù)工率,并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了一些信息:
a.截止3月1日20時(shí),全國(guó)已有11個(gè)省份工業(yè)企業(yè)復(fù)工率在90%以上,主要位于東南沿海地區(qū),位居前三的分別是貴州(100%)、浙江(99.8%)、江蘇(99%).
b.各省份復(fù)工率數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成6組,分別是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如圖2,在b的基礎(chǔ)上,畫出扇形統(tǒng)計(jì)圖:
d.截止到2020年3月1日各省份的復(fù)工率在80<x≤90這一組的數(shù)據(jù)是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的復(fù)工率的平均數(shù)、中位數(shù)、眾數(shù)如下:
日期 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
截止到2020年3月1日 | 80.79 | m | 50,90 |
請(qǐng)解答以下問題:
(1)依據(jù)題意,補(bǔ)全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計(jì)圖中50<x≤60這組的圓心角度數(shù)是 度(精確到0.1).
(3)中位數(shù)m的值是 .
(4)根據(jù)以上統(tǒng)計(jì)圖表簡(jiǎn)述國(guó)內(nèi)企業(yè)截止3月1日的復(fù)工率分布特征.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=4,cos∠ACH=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點(diǎn)P,使三角形PAC是等腰三角形?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com