【題目】如圖,一次函數(shù),與反比例函數(shù)交于點A(3,1)、B(-1,n),y1交y軸于點C,交x軸于點D.
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)求△OBD的面積;
(3)根據(jù)圖象直接寫出>的解集.
【答案】(1),y1=x﹣2;(2)S△BOD=3;(3)-1<x<0或x>3.
【解析】
(1)把A代入反比例函數(shù)的解析式,求出解析式,再把B代入反比例函數(shù)解析式求出B的坐標(biāo),最后把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)的解析式,
(2)令y1=0,有0=x-2,即x=2,得到OD=2,再過B作BE⊥x軸于點E,得到BE=3,利用三角形的面積公式即可解答,
(3)根據(jù)函數(shù)圖象結(jié)合不等式的關(guān)系,即可解答
解:(1)∵反比例函數(shù)的圖象經(jīng)過A(3,1),
∴k=3×1=3,
∴反比例函數(shù)的解析式為;把B(-1,n)代入反比例函數(shù)解析式,可得n=-3,
∴B(-1,-3),把A(3,1),B(-1,-3)代入一次函數(shù),可得,解得,
∴一次函數(shù)的解析式為y1=x﹣2;
(2)令y1=0,有0=x-2,即x=2,
∴D(2,0),OD=2,
如答圖,過B作BE⊥x軸于點E,
∵B(-1,-3),∴BE=3,
∴S△BOD=×OD×BE=×2×3=3;
(3)-1<x<0或x>3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設(shè)計購買方案,使總費用最低,并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個矩形的一邊是另一邊的兩倍,則稱這個矩形為方形.如圖1,矩形中,,則稱為方形.
(Ⅰ)設(shè)是方形的一組鄰邊,寫出的一組值為__________;
(Ⅱ)在中,將分別五等分,連結(jié)兩邊對應(yīng)的等分點,以這些連結(jié)線為一邊作矩形,使得這些矩形的邊的對邊分別在上,如圖2所示.
①若,邊上的高為,判斷以為一邊的矩形是否是方形?_________(填“是”或“否”);②若以為一邊的矩形為方形,則與邊上的高之比為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點E是正方形ABCD邊CD上任意一點,以DE為邊作正方形DEFG,連接BF,點M是線段BF中點,射線EM與BC交于點H,連接CM.
(1)請直接寫出CM和EM的數(shù)量關(guān)系和位置關(guān)系;
(2)把圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)45°,此時點F恰好落在線段CD上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請說明理由;
(3)把圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)90°,此時點E、G恰好分別落在線段AD、CD上,如圖3,其他條件不變,(1)中的結(jié)論是否成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店5月份購進甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.6月份,這兩種水果的進價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店6月份購進這兩種水果的數(shù)量與5月份都相同,將多支付貨款300元,求該店5月份購進甲、乙兩種水果分別是多少千克?
(2)若6月份將這兩種水果進貨總量減少到120千克,且甲種水果不超過乙種水果的3倍,則6月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在參加了宜昌市教育質(zhì)量綜合評價學(xué)業(yè)素養(yǎng)測試后,隨機抽取八年級部分學(xué)生,針對發(fā)展水平四個維度“閱讀素養(yǎng)、數(shù)學(xué)素養(yǎng)、科學(xué)素養(yǎng)、人文素養(yǎng)”,開展了“你最需要提升的學(xué)業(yè)素養(yǎng)”問卷調(diào)查(每名學(xué)生必選且只能選擇一項).小明、小穎和小雯在協(xié)助老師進行統(tǒng)計后,有這樣一段對話:
小明:“選科學(xué)素養(yǎng)和人文素養(yǎng)的同學(xué)分別為人,人.”
小穎:“選數(shù)學(xué)素養(yǎng)的同學(xué)比選閱讀素養(yǎng)的同學(xué)少人.”
小雯:“選科學(xué)素養(yǎng)的同學(xué)占樣本總數(shù)的.”
(1)這次抽樣調(diào)查了多少名學(xué)生?
(2)樣本總數(shù)中,選“閱讀素養(yǎng)”、“數(shù)學(xué)素養(yǎng)”的學(xué)生各多少人?
(3)如圖是調(diào)查結(jié)果整理后繪制成的扇形圖.請直接在橫線上補全相關(guān)百分比;
(4)該校八年級有學(xué)生人,請根據(jù)調(diào)查結(jié)果估計全年級選擇“閱讀素養(yǎng)”的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣積極響應(yīng)市政府加大產(chǎn)業(yè)扶貧力度的號召,決定成立草莓產(chǎn)銷合作社,負(fù)責(zé)扶貧對象戶種植草莓的技術(shù)指導(dǎo)和統(tǒng)一銷售,所獲利潤年底分紅.經(jīng)市場調(diào)研發(fā)現(xiàn),草莓銷售單價(萬元)與產(chǎn)量x(噸)之間的關(guān)系如圖所示.已知草莓的產(chǎn)銷投入總成本(萬元)與產(chǎn)量x(噸)之間滿足.
(1)直接寫出草莓銷售單價(萬元)與產(chǎn)量(噸)之間的函數(shù)關(guān)系式;
(2)求該合作社所獲利潤(萬元)與產(chǎn)量(噸)之間的函數(shù)關(guān)系式;
(3)為提高農(nóng)民種植草莓的積極性,合作社決定按萬元/噸的標(biāo)準(zhǔn)獎勵扶貧對象種植戶,為確保合作社所獲利潤(萬元)不低于萬元,產(chǎn)量至少要達(dá)到多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一種適用于筆記本電腦的鋁合金支架,邊,可繞點開合,在邊上有一固定點,支柱可繞點轉(zhuǎn)動,邊上有六個卡孔,其中離點最近的卡孔為,離點最遠(yuǎn)的卡孔為.當(dāng)支柱端點放入不同卡孔內(nèi),支架的傾斜角發(fā)生變化.將電腦放在支架上,電腦臺面的角度可達(dá)到六檔調(diào)節(jié),這樣更有利于工作和身體健康.現(xiàn)測得的長為,為,支柱為.
(1)當(dāng)支柱的端點放在卡孔處時,求的度數(shù);
(2)當(dāng)支柱的端點放在卡孔處時,,若相鄰兩個卡孔的距離相同,求此間距.(結(jié)果精確到十分位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系第一象限中有正方形,,點是軸上一動點,將沿直線翻折后,點落在點處。在上有一點,使得將沿直線翻折后,點落在直線上的點處,直線交于點,連接.
I.求證:;
Ⅱ.求與的函數(shù)關(guān)系式,并求出的最大值;
Ⅲ.當(dāng)時,直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com