【題目】如圖,在平面直角坐標系第一象限中有正方形,,點軸上一動點,將沿直線翻折后,點落在點處。在上有一點,使得將沿直線翻折后,點落在直線上的點處,直線于點,連接.

I.求證:;

Ⅱ.求的函數(shù)關(guān)系式,并求出的最大值;

Ⅲ.當時,直接寫出的值.

【答案】I.見解析;Ⅱ.,,當時,的最大值為1;Ⅲ..

【解析】

I.根據(jù)鄰補角的定義和角平分線的定義可得出,從而證出

.結(jié)合I中結(jié)論和直角三角形的兩銳角互余得出,從而得出,得到比例式得到tm之間的函數(shù)關(guān)系式,根據(jù)配方法求出的最大值.

. 先根據(jù)HL得出,證出,在AB上取一點Q,使得BQ=PQ,根據(jù),列出方程即可解決問題.

解:I.證明:∵,,

.

,即.

.,,

.

∵四邊形是正方形,,,

,,.

.

.

,.

∴當時,的最大值為1.

.如圖,∵,∴BC=AB,

,∴BE=AB,

BC=BE,又∵BN=BN

.

上取一點使得,

.

.

.

,

,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù),與反比例函數(shù)交于點A31)、B(-1n),y1y軸于點C,交x軸于點D

1)求反比例函數(shù)及一次函數(shù)的解析式;

2)求△OBD的面積;

3)根據(jù)圖象直接寫出的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于的方程的整數(shù)解()的組數(shù)為( ).

A. 2B. 3C. 4D. 無窮多組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC.按如下步驟作圖:①以A為圓心,AB長為半徑畫弧;②以C為圓心,CB長為半徑畫弧,兩弧相交于點D;③連結(jié)BD,與AC交于點E,連結(jié)AD,CD

1)求證:△ABC≌△ADC;

2)若∠BAC30°,∠BCA45°,BC2;

①求∠BAD所對的弧BD的長;②直接寫出AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線,與軸交于,兩點,頂點為;將繞點旋轉(zhuǎn)180°得到,頂點為組成一個新的圖象.垂直于軸的直線與新圖象交于點,,與線段交于點,且,,均為正數(shù),設(shè),則的最大值是( )

A. 15B. 18C. 21D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面的坡度為,文化墻在天橋底部正前方8米處(的長),為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為(參考數(shù)據(jù):,)

(1)若新坡面坡角為,求坡角度數(shù);

(2)有關(guān)部門規(guī)定,文化墻距天橋底部小于3米時應拆除,天橋改造后,該文化墻是否需要拆除?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘船由A港沿北偏東60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);

2)確定C港在A港的什么方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為九年級數(shù)學競賽獲獎選手購買以下三種獎品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購買的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費346元,若使購買的獎品總數(shù)最多,則這三種獎品的購買數(shù)量各為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應國家的一帶一路經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部分別對AB、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖:

1)抽查D廠家的零件為   件,扇形統(tǒng)計圖中D廠家對應的圓心角為   度;

2)抽查C廠家的合格率零件為   件,并將圖1補充完整;

3)通過計算說明A、C兩廠家誰的合格率更高?

查看答案和解析>>

同步練習冊答案