【題目】如圖拋物線yax2+bx+c的圖象經(jīng)過(1,0),對(duì)稱軸x1,則下列三個(gè)結(jié)論:①abc0;②10a+3b+c0;③am2+bm+a≥0.正確的結(jié)論為_____(填序號(hào)).

【答案】②③

【解析】

①觀察圖象的開口方向、對(duì)稱軸、與y軸的交點(diǎn)坐標(biāo)即可判斷;

②觀察圖象可知當(dāng)x3時(shí)y大于0代入值即可判斷;

③根據(jù)對(duì)稱軸得b2a代入即可判斷.

解:①觀察圖象可知:

a0b0,c0,

abc0.

所以①錯(cuò)誤;

②觀察圖象可知:

當(dāng)x3時(shí),y0

9a+3b+c0,

a0,

10a+3b+c0.

所以②正確;

③因?yàn)閷?duì)稱軸x1,

所以b=﹣2a,

所以am2+bm+a

am22am+a

a(m1)2≥0.

所以am2+bm+a≥0.

所以③正確.

故答案為②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,EAB上一點(diǎn),連接DE,過點(diǎn)AAFDE,垂足為F.⊙O經(jīng)過點(diǎn)C、D、F,與AD相交于點(diǎn)G,且AB與⊙O相切,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點(diǎn)為B(1,3),與軸的交點(diǎn)A在點(diǎn) (2,0)和(3,0)之間.以下結(jié)論:

;;;;⑤若,且,

.其中正確的結(jié)論有

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在AB,AD上,若CE5,且∠ECF45°,則CF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是yx22x3.

(1)求該函數(shù)圖象與x軸,y軸的交點(diǎn)坐標(biāo)以及它的頂點(diǎn)坐標(biāo):

(2)根據(jù)(1)的結(jié)果在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣x2+bx+c的圖象與直線y=﹣x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)BBCx軸,垂足為C(3,0).

(1)填空:b_____,c_____.

(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),過NNPx軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

(3)(2)的條件下,點(diǎn)N在何位置時(shí),BMNC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,的兩邊分別與AB,BC交于點(diǎn)EF,與對(duì)角線AC交于點(diǎn)G,H,已知,

1)如圖1,當(dāng),時(shí),

①求證:

②求線段GH的長;

2)如圖2,當(dāng)繞點(diǎn)D旋轉(zhuǎn)時(shí),線段AG,GH,HC的長度都在變化.設(shè)線段,,,試探究pmn的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx2+bx+c過點(diǎn)A1,0),C0,﹣3

1)求此二次函數(shù)的解析式及頂點(diǎn)坐標(biāo).

2)設(shè)點(diǎn)P是該拋物線上的動(dòng)點(diǎn),當(dāng)△ABP的面積等于△ABC面積的時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(diǎn)(的左側(cè)),且點(diǎn)坐標(biāo)為.平行于軸的直線點(diǎn).

求一次函數(shù)與二次函數(shù)的解析式;

判斷以線段為直徑的圓與直線的位置關(guān)系,并給出證明;

把二次函數(shù)的圖象向右平移個(gè)單位,再向下平移個(gè)單位,二次函數(shù)的圖象與軸交于,兩點(diǎn),一次函數(shù)圖象交軸于點(diǎn).當(dāng)為何值時(shí),過,,三點(diǎn)的圓的面積最?最小面積是多少?

查看答案和解析>>

同步練習(xí)冊答案