【題目】已知正比例函數(shù)圖象經(jīng)過(-2,4.

(1)如果點(a,1)和(-1,b)在函數(shù)圖象上,求ab的值;

(2)過圖象上一點Py軸的垂線,垂足為Q0,-8),求△OPQ的面積.

【答案】1a=b=2 ;(2) 16

【解析】

1)設(shè)正比比例函數(shù)的解析式為y=kxk≠0),再把(-2,4)代入求出k的值,進而得出其解析式,把點(a1)和(-1,b)代入求出ab的值即可;
2)把y=-8代入正比例函數(shù)的解析式求出x的值即可得出P點坐標,由三角形的面積公式即可得出結(jié)論.

1)設(shè)正比比例函數(shù)的解析式為y=kxk≠0),
∵正比例函數(shù)圖象經(jīng)過(-2,4),
4=-2k
解得k=-2,
∴正比例函數(shù)的解析式為y=-2x
∵點(a1)和(-1,b)在函數(shù)圖象上,
1=-2a,b=2,
解得a=b=2;
2)∵當y=-8時,x=4,
P4,-8),
SOPQ=×8×4=16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,BC4,E,F分別是AB,AC的中點,動點P在直線EF上,∠CBP的平分線交CE于點Q,當點Q把線段EC分成的兩線段之比是12時,線段EP、BP滿足的數(shù)量關(guān)系是__________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象與y軸相交于點(0,3),并經(jīng)過點(2,5),它的對稱軸是x1,如圖為函數(shù)圖象的一部分.

1)求函數(shù)解析式,寫出函數(shù)圖象的頂點坐標;

2)在圖中,畫出函數(shù)圖象的其余部分;

3)如果點Pn2n)在上述拋物線上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進行消毒.已知藥物釋效過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,yx成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:

(1)寫出從藥物釋放開始,yx之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;

(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.45毫克以下時,學(xué)生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進入教室?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有一塊長方形水稻試驗田,試驗田的長、寬(如圖所示,長度單位:米),試驗田分兩部分,一部分為水渠,另一部分為新型水稻種植田(陰影部分).

(1)用含a,b的式子表示新型水稻種植田的面積是多少平方米(結(jié)果化成最簡形式);

(2)a=30,b=40,在農(nóng)民豐收節(jié)到來之時水稻成熟,計劃先由甲型收割機收割一部分,再由乙型收割機收割剩余部分,甲型收割機收割水稻每平方米的費用為0.3元,乙型收割機收割水稻每平方米的費用為0.5元,若要收割全部水稻的費用不超過5000元,問甲型收割機最少收割多少平方米的水稻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:四邊形ABCD中,E、F、GH分別為各邊的中點,順次連接EF、G、H,把四邊形EFGH稱為中點四邊形.連接ACBD,容易證明:中點四邊形EFGH一定是平行四邊形.

1)如果改變原四邊形ABCD的形狀,那么中點四邊形的形狀也隨之改變,通過探索可以發(fā)現(xiàn):當四邊形ABCD的對角線滿足ACBD時,四邊形EFGH為菱形.當四邊形ABCD的對角線滿足   時,四邊形EFGH為矩形;當四邊形ABCD的對角線滿足   時,四邊形EFGH為正方形;

2)探索三角形AEH、三角形CFG與四邊形ABCD的面積之間的等量關(guān)系,請寫出你發(fā)現(xiàn)的結(jié)論,并加以證明;

3)如果四邊形ABCD的面積為2,那么中點四邊形EFGH的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小亮兩人用如圖所示的兩個分隔均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,將兩個指針所指數(shù)字相加(若指針恰好停在分割線上,則重轉(zhuǎn)一次).如果這兩個數(shù)字之和小于8(不包括8),則小明獲勝;否則小亮獲勝。

(1)利用列表法或畫樹狀圖的方法表示游戲所有可能出現(xiàn)的結(jié)果;

(2)這個游戲?qū)﹄p方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為ab,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為A,B,C

1)若小明將一袋分好類的生活垃圾隨機投入一類垃圾箱,請畫樹狀圖或列表求垃圾投放正確的概率;

2)為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該小區(qū)三類垃圾箱中總共100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下表(單位:噸):

試估計該小區(qū)居民“廚余垃圾”投放正確的概率約是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.

(1)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經(jīng)過多長時間P、Q兩點之間的距離是10cm?

(2)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經(jīng)過多長時間PBQ的面積為12cm2?

查看答案和解析>>

同步練習(xí)冊答案