如圖,在菱形ABCD中,E為邊BC的中點(diǎn),DE與對(duì)角線AC交于點(diǎn)M,過(guò)點(diǎn)M作MF⊥CD于點(diǎn)F,∠1=∠2.
求證:(1)DE⊥BC;
(2)AM=DE+MF.
(1)證明∠CFM=90°,△CFM≌△CEM,推出∠CEM =90°,即DE⊥BC.
(2)延長(zhǎng)AB交DE于點(diǎn)N,通過(guò)中位線性質(zhì)和邊的等量代換,證明AM= MN,MN =NE+ME,ME=MF,所以AM=DE+MF.
解析試題分析:(1)證明垂直,可以通過(guò)證明角等于90°,或者找出等腰三角形利用三線合一,該題可以考慮通過(guò)證明角為90°;
∵四邊形ABCD是菱形,∴∠BCA=∠ACD,AB∥CD.
∴∠1=∠ACD.
∵∠1=∠2,∴∠ACD=∠2.
∴MC=MD.
∵M(jìn)F⊥CD,∴∠CFM=90°,CF=CD.
∵E為BC的中點(diǎn),∴CE=BE=BC.
∴CF= CE.
∵CM=CM,
∴△CFM≌△CEM.
∴∠CEM=∠CFM=90°,
即DE⊥BC.
(2)證明不相干的邊的數(shù)量關(guān)系,可以應(yīng)用邊的等量代換;
延長(zhǎng)AB交DE于點(diǎn)N,
∵AB∥CD,CE=BE,
∴NE=DE,∠N=∠2.
∵∠1=∠2,∴∠1=∠N.
∴AM=MN.
∵NM=NE+ME,∴AM=DE+ME.
∵M(jìn)E=MF,∴AM=DE+MF.
考點(diǎn):菱形、等腰三角形的性質(zhì)
點(diǎn)評(píng):該題是?碱},主要考查學(xué)生對(duì)菱形和等腰三角形性質(zhì)應(yīng)用的熟練程度。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com