【題目】用適當(dāng)?shù)姆椒ㄓ?jì)算:

10.36(7.4)0.5(0.6)0.14;

2(2.125)(3.2);

3.

4|0.75|(3)(0.25).

5

【答案】(1)-7;(2)3;(3);(4)-1;(5)

【解析】

利用有理數(shù)混合運(yùn)算法則以及簡(jiǎn)便算法解答即可,利用加法交換律解(1)(2)(3)(4)更簡(jiǎn)便.

(1)0.36(7.4)0.5(0.6)0.14

解:原式=(0.360.14)[(7.4)(0.6)]0.5

0.5(8)0.5

=-7.

(2)(2.125)(3)(5)(3.2)

解:原式=[(2.125)(5)][(3)(3.2)]

3.

(3)(2)(3)(3)(2)(1)(1).

解:原式=[(2)(3)][(3)(2)][(1)(1)]

(6)6()

=-.

4|0.75|(3)(0.25)||.

解:原式=0.7530.25

(0.750.25)()3

113

=-1.

(5)(81)÷(3)×()÷(1);

解:原式=-81÷×÷

=-81×××

=-10 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光華中學(xué)庫(kù)存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)校.現(xiàn)有甲、乙兩修理組,甲修理組單獨(dú)完成任務(wù)需要12天,乙修理組單獨(dú)完成任務(wù)需要24.

1)若由甲、乙兩修理組同時(shí)修理,需多少天可以修好這些套桌椅?

2)若甲、乙兩修理組合作3天后,甲修理組因新任務(wù)離開(kāi),乙修理組繼續(xù)工作.甲完 成新任務(wù)后,回庫(kù)與乙又合作3天,恰好完成任務(wù).問(wèn):甲修理組離開(kāi)幾天?

3)學(xué)校需要每天支付甲修理組、乙修理組修理費(fèi)分別為80元,120.任務(wù)完成后, 兩修理組收到的總費(fèi)用為1920元,求甲修理組修理了幾天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)實(shí)驗(yàn)室:

我們知道,在數(shù)軸上,|a|表示數(shù)a的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義.進(jìn)一步地,數(shù)軸上的兩個(gè)點(diǎn)A、B,分別表示有理數(shù)a、b,那么A、B兩點(diǎn)之間的距離AB=|ab|.利用此結(jié)論,回答以下問(wèn)題:

(1)數(shù)軸上表示1和5的兩點(diǎn)之間的距離是______,數(shù)軸上表示1和-5的兩點(diǎn)之間的距離是______.(1+1分,注意寫出最后結(jié)果)

(2)式子|x+2|可以看做數(shù)軸上表示x和______的兩點(diǎn)之間的距離.

(3)式子|x+2|+|x-3|的最小值是______.

(4)當(dāng)|x+2|+|x-3|取得最小值時(shí),數(shù)x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=+bx+c圖象經(jīng)過(guò)A10),B40)兩點(diǎn).

1)求拋物線的解析式;

2)若Cm,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),D是線段AB上的一個(gè)動(dòng)點(diǎn)(不與AB重合),過(guò)點(diǎn)D分別作DEBCACE,DFACBCF.

①求證:四邊形DECF是矩形;

②連結(jié)EF,線段EF的長(zhǎng)是否存在最小值?若存在,求出EF的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:對(duì)于排好順序的三個(gè)數(shù): 稱為數(shù)列.將這個(gè)數(shù)列如下式進(jìn)行計(jì)算: ,,,所得的三個(gè)新數(shù)中,最大的那個(gè)數(shù)稱為數(shù)列的“關(guān)聯(lián)數(shù)值”.

例如:對(duì)于數(shù)列因?yàn)?/span>所以數(shù)列的“關(guān)聯(lián)數(shù)值”為6.進(jìn)一步發(fā)現(xiàn):當(dāng)改變這三個(gè)數(shù)的順序時(shí),所得的數(shù)列都可以按照上述方法求出關(guān)聯(lián)數(shù)值,如:數(shù)列關(guān)聯(lián)數(shù)值0;數(shù)列的“關(guān)聯(lián)數(shù)值”為3...而對(duì)于這三個(gè)數(shù),按照不同的排列順序得到的不同數(shù)列中,關(guān)聯(lián)數(shù)值"的最大值為6.

(1)數(shù)列的“關(guān)聯(lián)數(shù)值”為_______;

(2)將“”這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)不同的數(shù)列,這些數(shù)列的“關(guān)聯(lián)數(shù)值”的最大值是_______, 取得“關(guān)聯(lián)數(shù)值”的最大值的數(shù)列是______

3)將這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)不同的數(shù)列,這些數(shù)列的關(guān)聯(lián)數(shù)值的最大值為10,求的值,并寫出取得關(guān)聯(lián)數(shù)值最大值的數(shù)列.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn)分別在上,且,將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),畫直線于點(diǎn),連接,,有下列結(jié)論:

; 的大小隨著的變化而變化;

③當(dāng)時(shí),四邊形為菱形; 面積的最大值為

其中正確的是_____________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),BOx軸的負(fù)半軸上,∠BOC=60°,頂點(diǎn)C的坐標(biāo)為m,),反比例函數(shù)的圖像與菱形對(duì)角線AO交于D點(diǎn),連接BD,當(dāng)BDx軸時(shí)k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017湖南省益陽(yáng)市)在平面直角坐標(biāo)系中,將一點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這一點(diǎn)的“互換點(diǎn)”,如(﹣3,5)與(5,﹣3)是一對(duì)“互換點(diǎn)”.

1)任意一對(duì)“互換點(diǎn)”能否都在一個(gè)反比例函數(shù)的圖象上?為什么?

2M、N是一對(duì)“互換點(diǎn)”,若點(diǎn)M的坐標(biāo)為(m,n),求直線MN的表達(dá)式(用含m、n的代數(shù)式表示);

3)在拋物線的圖象上有一對(duì)“互換點(diǎn)”AB,其中點(diǎn)A在反比例函數(shù)的圖象上,直線AB經(jīng)過(guò)點(diǎn)P),求此拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某客運(yùn)公司的特快巴士與普通巴士同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,普通巴士到達(dá)乙地后停止,特快巴士到達(dá)乙地停留45分鐘后,按原路以另一速度勻速返回甲地,已知兩輛巴士分別距乙地的路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示.求普通巴士到達(dá)乙地時(shí),特快巴士與甲地之間的距離為_____千米.

查看答案和解析>>

同步練習(xí)冊(cè)答案