【題目】關(guān)于的方程有兩個不相等的實數(shù)根.
求實數(shù)的取值范圍;
是否存在實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.
【答案】(1)且;(2)不存在符合條件的實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根.
【解析】
由于方程有兩個不相等的實數(shù)根,所以它的判別式,由此可以得到關(guān)于的不等式,解不等式即可求出的取值范圍.
首先利用根與系數(shù)的關(guān)系,求出兩根之和與兩根之積,再由方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根,可以得出關(guān)于的等式,解出值,然后判斷值是否在中的取值范圍內(nèi).
解:依題意得,
,
又,
的取值范圍是且;
解:不存在符合條件的實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根,
理由是:設方程的兩根分別為,,
由根與系數(shù)的關(guān)系有:,
又因為方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根,
,
,
由知,,且,
不符合題意,
因此不存在符合條件的實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根.
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)研究,人體內(nèi)血乳酸濃度升高是運動后感覺疲勞的重要原因,運動員未運動時,體內(nèi)血乳酸濃度水平通常在40mg/L以下;如果血乳酸濃度降到50mg/L以下,運動員就基本消除了疲勞,體育科研工作者根據(jù)實驗數(shù)據(jù),繪制了一副圖象,它反映了運動員進行高強度運動后,體內(nèi)血乳酸濃度隨時間變化而變化的函數(shù)關(guān)系.
下列敘述正確的是
A. 運動后40min時,采用慢跑活動方式放松時的血乳酸濃度與采用靜坐方式休息時的血乳酸濃度相同
B. 運動員高強度運動后最高血乳酸濃度大約為350mg/L
C. 運動員進行完劇烈運動,為了更快達到消除疲勞的效果,應該采用慢跑活動方式來放松
D. 采用慢跑活動方式放松時,運動員必須慢跑80min后才能基本消除疲勞
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,DE=3BE,點P,Q分別在BD,AD 上,則AP+PQ的最小值為:
A. 2 B. C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:AD=CE;
(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了準備“迎新活動”,用700元購買了甲、乙兩種小禮品260個,其中購買甲種禮品比乙種禮品少用了100元.
(1)購買乙種禮品花了______元;
(2)如果甲種禮品的單價比乙種禮品的單價高20%,求乙種禮品的單價.(列分式方程解應用題)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A(a,0),B(b,3),C(c,0),滿足++=0.
(1)分別求出點,,的坐標及三角形ABC的面積.
(2)如圖2.過點C作于點D,F是線段AC上一點,滿足,若點G是第二象限內(nèi)的一點,連接DG,使,點E是線段AD上一動點(不與A、D重合),連接CE交DF于點H,點E在線段AD上運動的過程中,的值是否會變化?若不變,請求出它的值;若變化,請說明理由.
(3)如圖3,若線段AB與軸相交于點F,且點F的坐標為(0,),在坐標軸上是否存在一點P,使三角形ABP和三角形ABC的面積相等?若存在,求出P點坐標.若不存在,請說明理由.(點C除外)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com