如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點(diǎn),CD垂直于x軸,D(5,4),AD=2.若動(dòng)點(diǎn)E、F同時(shí)從點(diǎn)O出發(fā),E點(diǎn)沿折線OA→AD→DC運(yùn)動(dòng),到達(dá)C點(diǎn)時(shí)停止;F點(diǎn)沿OC運(yùn)動(dòng),到達(dá)C點(diǎn)是停止,它們運(yùn)動(dòng)的速度都是每秒1個(gè)單位長(zhǎng)度.設(shè)E運(yùn)動(dòng)秒x時(shí),△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.
【答案】分析:首先根據(jù)點(diǎn)D的坐標(biāo)求得點(diǎn)A的坐標(biāo),從而求得線段OA和線段OC的長(zhǎng),然后根據(jù)運(yùn)動(dòng)時(shí)間即可判斷三角形EOF的面積的變化情況.
解答:解:∵D(5,4),AD=2.
∴OC=5,CD=4  OA=5
∴運(yùn)動(dòng)x秒(x<5)時(shí),OE=OF=x,
作EH⊥OC于H,AG⊥OC于點(diǎn)G,
∴EH∥AG
∴△EHO∽△AGO

即:
∴EH=x
∴S△EOF=OF•EH=×x×x=x2,
故A、B選項(xiàng)錯(cuò)誤;
當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)E運(yùn)動(dòng)到點(diǎn)A,此時(shí)點(diǎn)F停止運(yùn)動(dòng),點(diǎn)E在AD上運(yùn)動(dòng),△EOF的面積不變,
點(diǎn)在DC上運(yùn)動(dòng)時(shí),如右圖,
EF=11-x,OC=5
∴S△EOF=OC•CE=×(11-x)×5=-x+是一次函數(shù),故C正確,
故選C.
點(diǎn)評(píng):本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,解題的關(guān)鍵是根據(jù)動(dòng)點(diǎn)確定分段函數(shù)的圖象.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,Rt△AOC的頂點(diǎn)A(-1,3),∠ACO=90°,點(diǎn)O為坐標(biāo)原點(diǎn).將Rt△AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到Rt△A′OC′.設(shè)直線AA′與x軸交于點(diǎn)M、與y軸交于點(diǎn)N,拋物線經(jīng)過(guò)點(diǎn)C、M、N.解答下列問(wèn)題:
(1)求直線AA′的解析式;
(2)求拋物線的解析式;
(3)在拋物線上是否存在這樣的點(diǎn)P,使四邊形PA′C′N成為直角梯形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問(wèn)的條件下,線段OC上是否存在一點(diǎn)M,過(guò)M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過(guò)D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=
12
S梯形AOBC?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問(wèn)的條件下,線段OC上是否存在一點(diǎn)M,過(guò)M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過(guò)D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=數(shù)學(xué)公式S梯形AOBC?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問(wèn)的條件下,線段OC上是否存在一點(diǎn)M,過(guò)M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過(guò)D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=S梯形AOBC?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問(wèn)的條件下,線段OC上是否存在一點(diǎn)M,過(guò)M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過(guò)D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=S梯形AOBC?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案