【題目】如圖,∠MON=90°,正方形ABCD的頂點(diǎn)A、B分別在OM、ON上,AB=13,OB=5,E為AC上一點(diǎn),且∠EBC=∠CBN,直線DE與ON交于點(diǎn)F.
(1)求證BE=DE;
(2)判斷DF與ON的位置關(guān)系,并說明理由;
(3)△BEF的周長(zhǎng)為 .
【答案】(1)見解析;(2)DF⊥ON,理由見解析;(3)24
【解析】
(1)根據(jù)正方形的性質(zhì)證明△BCE≌△DCE即可;
(2)由第一題所得條件和已知條件可推出∠EDC=∠CBN,再利用90°的代換即可證明;
(3)過D點(diǎn)作DG垂直于OM,交點(diǎn)為G,結(jié)合已知條件推出DF和BF的長(zhǎng),再根據(jù)第一題結(jié)論得出△BEF的周長(zhǎng)等于DF加BF即可得出答案.
解:(1)證明:∵四邊形ABCD正方形,
∴CA平分∠BCD,BC=DC,
∴∠BCE=∠DCE=45°,
∵CE=CE,
∴△BCE≌△DCE(SAS);
∴BE=DE;
(2)DF⊥ON,理由如下:
∵△BCE≌△DCE,
∴∠EBC=∠EDC,
∵∠EBC=∠CBN,
∴∠EDC=∠CBN,
∵∠EDC+∠1=90°,∠1=∠2,
∴∠2+∠CBN=90°,
∴∠EFB=90°,即DF⊥ON;
(3)過D點(diǎn)作DG垂直于OM,交點(diǎn)為G,
∵四邊形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAG+∠BAO=90°,
∵∠ABO+∠BAO=90°,
∴∠DAG=∠ABO,
又∵∠MON=90°,DG⊥OM,
∴△ADG≌△ABO,
∴DM=AO,GA=OB=5,
∵AB=13,OB=5,
根據(jù)勾股定理可得AO=12,
由(2)可知DF⊥ON,
又∵∠MON=90°,DG⊥OM,
∴四邊形OFDM是矩形,
∴OF=DG=AO=12,DF=OM=17,
由(1)可知BE=DE,
∴△BEF的周長(zhǎng)=DF+BF=17+(12-5)=24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)完《有理數(shù)》后,小奇對(duì)運(yùn)算產(chǎn)生了濃厚的興趣.借助有理數(shù)的運(yùn)算,定義了一種新運(yùn)算“⊕”,規(guī)則如下:a⊕b=a×b+2×a.
(1)求2⊕(﹣1)的值;
(2)求﹣3⊕(﹣4⊕)的值;
(3)試用學(xué)習(xí)有理數(shù)的經(jīng)驗(yàn)和方法來探究這種新運(yùn)算“⊕”是否具有交換律?請(qǐng)寫出你的探究過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)(k>0)的圖象經(jīng)過BC邊的中點(diǎn)D(3,1).
(1)求這個(gè)反比例函數(shù)的表達(dá)式;
(2)若△ABC與△EFG成中心對(duì)稱,且△EFG的邊FG在y軸的正半軸上,點(diǎn)E在這個(gè)函數(shù)的圖象上.
①求OF的長(zhǎng);
②連接AF,BE,證明四邊形ABEF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把順次連接四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形.若一個(gè)任意四邊形的面積為a,則它的中點(diǎn)四邊形面積為( )
A.aB. C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)初中生一周課外閱讀時(shí)長(zhǎng)的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長(zhǎng)分為四類:2小時(shí)以內(nèi),2~4小時(shí)(含2小時(shí)),4~6小時(shí)(含4小時(shí)),6小時(shí)及以上,并繪制了如圖所示不完整的統(tǒng)計(jì)圖.
(1)本次調(diào)查共隨機(jī)抽取了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長(zhǎng)“4~6小時(shí)”對(duì)應(yīng)的圓心角度數(shù)為 ;
(4)若該區(qū)共有10 000名初中生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)不少于4小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)﹣7﹣1;
(2)(﹣3)+(﹣5)﹣(+11)﹣(﹣17);
(3)﹣3+8﹣7;
(4)()×(﹣24);
(5)()×(﹣12);
(6)(﹣0.1)﹣(﹣8)+(﹣11)﹣(﹣);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖像經(jīng)過第二象限內(nèi)的點(diǎn),軸于點(diǎn),的面積為2.若直線經(jīng)過點(diǎn),并且經(jīng)過反比例函數(shù)的圖像上另一點(diǎn).
(1)求反比例函數(shù)與直線的解析式;
(2)連接,求的面積;
(3)不等式的解集為_________
(4)若在圖像上,且滿足,則的取值范圍是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>
(1)x2﹣4x﹣5=0;
(2)y(y﹣7)=14﹣2y;
(3)2x2﹣3x﹣1=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正內(nèi)接于是劣弧BC上任意一點(diǎn),PA與BC交于點(diǎn)E,有如下結(jié)論:
; ; ;
; 圖中共有6對(duì)相似三角形.
其中,正確結(jié)論的個(gè)數(shù)為
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com