【題目】如圖,∠AOB和∠COD都是直角,射線OE是∠AOC的平分線.
(1)把圖中相等的角寫出來,并說明它們相等的理由;
(2)若∠BOC=40°,直接寫出∠BOD= 度,∠COE= 度.
【答案】(1)(1)∠AOB=∠COD,∠AOC=∠BOD,∠AOE=∠COE,理由見解析;(2)50,25.
【解析】
(1)根據(jù)直角都相等、同角的余角相等、角平分線的定義解答;
(2)根據(jù)角平分線的定義解答.
(1)∠AOB=∠COD,∠AOC=∠BOD,∠AOE=∠COE,
理由如下:∵∠AOB和∠COD都是直角,
∴∠AOB=∠COD,
∴∠AOB﹣∠BOC=∠COD﹣∠BOC,即∠AOC=∠BOD,
∵OE是∠AOC的平分線,
∴∠AOE=∠COE;
(2)∠BOD=∠COD﹣∠COB=90°﹣40°=50°,
∴∠AOC=∠BOD=50°,
∵OE是∠AOC的平分線,
∴∠COE=×50°=25°,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價為15元/千克,如果售價為20元/千克,那么每天可售出250千克,如果售價為25元/千克,那么每天可獲利2000元,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若櫻桃的售價不得高于28元/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】駕駛員血液中每毫升的酒精含量大于或等于200微克即為酒駕,某研究所經(jīng)實驗測得:成人飲用某品牌38度白酒后血液中酒精濃度y(微克/毫升)與飲酒時間x(小時)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時,y與x成反比例).
(1)根據(jù)圖象分別求出血液中酒精濃度上升和下降階段y與x之間的函數(shù)表達(dá)式.
(2)問血液中酒精濃度不低于200微克/毫升的持續(xù)時間是多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,中的點是邊上的一點,過點的反比例函數(shù)與邊交于點,連接.
(1)如圖1,若點的坐標(biāo)為,點的坐標(biāo)為,且的面積為5,求直線和反比例函數(shù)的解析式;
(2)如圖2,若,過作,與交于點,若,并且的面積為,求反比例函數(shù)的解析式及點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點在數(shù)軸上,A點對應(yīng)的有理數(shù)是﹣2,線段AB=12,點P從點A出發(fā),沿AB以每秒1個單位長度的速度向終點B勻速運動;同時點Q從點B出發(fā),沿BA以每秒2個單位長度的速度向終點A勻速運動,設(shè)運動時間為ts
(1)請在數(shù)軸上標(biāo)出原點O和B點所對應(yīng)的有理數(shù):
(2)直接寫出PA= ,BQ= (用含t的代數(shù)式表示);
(3)當(dāng)P,Q兩點相遇時,求t的值;
(4)當(dāng)P,Q兩點相距5個單位長度時,直接寫出線段PQ的中點對應(yīng)的有理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點D在BC邊上,把△ABD沿AD折疊后,使得點B落在點E處,連接CE,若∠DBE=20°,則∠ADC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,弦CD平分∠ACB,點E為弧AD上一點,連接CE、DE,CD與AB交于點N.
(1)如圖1,求證:∠AND=∠CED;
(2)如圖2,AB為⊙O直徑,連接BE、BD,BE與CD交于點F,若2∠BDC=90°﹣∠DBE,求證:CD=CE;
(3)如圖3,在(2)的條件下,連接OF,若BE=BD+4,BC=,求線段OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射陽縣實驗初中為了解全校學(xué)生上學(xué)期參加社區(qū)活動的情況,學(xué)校隨機調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
參加社區(qū)活動次數(shù)的頻數(shù)、頻率分布表
活動次數(shù)x | 頻數(shù) | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根據(jù)以上圖表信息,解答下列問題:
(1)表中a= ,b= ;
(2)請把頻數(shù)分布直方圖補充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));
(3)若該校共有1200名學(xué)生,請估計該校在上學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com