【題目】在四邊形中,,,點在邊上,點在四邊形內(nèi)部且到邊、的距離相等,若要使是直角三角形且是等腰三角形,則__________

【答案】

【解析】

分兩種情況,根據(jù)相似三角形的判定與性質(zhì)求解即可.

在四邊形ABCD中,,,

AC=

RtACD中,DC=

BC=DC,

∴△ACB≌△ACD,

∴∠ACB=ACD,∠BAC=DAC

∵點在四邊形內(nèi)部且到邊的距離相等,

∴點NAC.

1)如圖1,當MNAC時,易證得CMN∽△CAB,

,

是等腰三角形,

AM=MN

CN=13-AN=13-MN,

,

MN=;

(2) 如圖2,當MNBC時,易證得CMN∽△CBA,

,

是等腰三角形,

AM=MN

CN=13-AN=13-MN,

,

MN=.

故答案為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,點F從菱形ABCD的頂點A出發(fā),沿ADB1cm/s的速度勻速運動到點B.圖②是點F運動時,△FBC的面積ycm)隨時間xs)變化的關(guān)系圖象,則a的值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AORtABC的角平分線,∠ACB90°,以O為圓心,OC為半徑的圓分別交AOBC于點D,E,連接ED并延長交AC于點F

1)求證:AB是⊙O的切線;

2)當時,求的值;

3)在(2)的條件下,若⊙O的半徑為4,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在任意四邊形ABCD,ACBD是對角線E、FG、H分別是線段BDBC、AC、AD上的點對于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是( )

A. EF,G,H是各條線段的中點時,四邊形EFGH為平行四邊形

B. EF,G,H是各條線段的中點,ACBD四邊形EFGH為矩形

C. E,F,GH是各條線段的中點,AB=CD四邊形EFGH為菱形

D. E,F,G,H不是各條線段的中點時,四邊形EFGH可以為平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AC4AB2,將矩形ABCD繞點A旋轉(zhuǎn)得到矩形AB'C'D',使點B的對應(yīng)點B'落在AC上,B'C'AD于點E,在B'C'上取點F,使B'FAB

1)求證:AEC'E;

2)求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項目進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學(xué)生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應(yīng)的圓心角度數(shù)為_____;

(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標系xOy中的點M和圖形W1,W2給出如下定義:點P為圖形W1上一點,點Q為圖形W2上一點,當點M是線段PQ的中點時,稱點M是圖形W1,W2中立點.如果點Px1y1),Qx2,y2),那么中立點”M的坐標為(,).

已知,點A-30),B04),C4,0).

1)連接BC,在點D,0),E0,1),F0,)中,可以成為點A和線段BC中立點的是______

2)已知點G3,0),G的半徑為2,如果直線y=-x+1存在點K可以成為點AG中立點,求點K的坐標;

3)以點C為圓心,半徑為2作圓,點N為直線y=2x+4上的一點,如果存在點N,使得y軸上的一點可以成為點NC中立點,直接寫出點N的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個函數(shù),若對于每個使函數(shù)有意義的實數(shù),函數(shù)的值為兩個函數(shù)值中的較小的數(shù),則稱函數(shù)為這兩個函數(shù)的較小值函數(shù).例如:,則的較小值函數(shù)為

1)函數(shù)是函數(shù)的較小值函數(shù).

①在如圖的平面直角坐標系中兩出函數(shù)的圖象.

②求函數(shù)的圖象與軸的交點坐標.

2)函數(shù)是函數(shù)的較小值函數(shù).

①寫出函數(shù)的兩條性質(zhì).

②當時,函數(shù)值的取值范圍為.當取某個范圍內(nèi)的任意值時,為定值,直接寫出滿足條件的的取值范圍及其對應(yīng)的的值.

查看答案和解析>>

同步練習(xí)冊答案