【題目】如圖,在△ABC中,AB=AC,DE是過點(diǎn)A的直線,BD⊥DE于D,CE⊥DE于點(diǎn)E.
(1)若B、C在DE的同側(cè)(如圖1所示)且AD=CE,AB與AC垂直嗎?為什么?
(2)若B、C在DE的兩側(cè)(如圖2所示),其他條件不變,AB與AC是否垂直嗎?若垂直請(qǐng)給出證明;若不垂直,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)AB⊥AC.
【解析】試題分析:(1)由已知條件,證明△ABD≌△CAE,再利用角與角之間的關(guān)系求證∠BAD+∠CAE=90°,即可得到AB⊥AC;
(2)同(1),先證△ABD≌△CAE,再利用角與角之間的關(guān)系求證∠BAD+∠CAE=90°,即可證明AB⊥AC.
試題解析:(1)證明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵AB=AC,AD=CE,∴Rt△ABD≌Rt△CAE,∴∠DAB=∠ECA,∠DBA=∠ACE.
∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.
∠BAC=180°﹣(∠BAD+∠CAE)=90°,∴AB⊥AC.
(2)AB⊥AC.理由如下:
同(1)一樣可證得△ABD≌△CAE,∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知,3的正整數(shù)次冪:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,……,觀察歸納,可得32007的個(gè)位數(shù)字是( )
A.1
B.3
C.7
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的二次函數(shù)y=x2+bx+c經(jīng)過點(diǎn)(﹣1,0)和(2,6).
(1)求b和c的值.
(2)若點(diǎn)A(n,y1),B(n+1,y2),C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,問是否存在整數(shù)n,使?若存在,請(qǐng)求出n;若不存在,請(qǐng)說明理由.
(3)若點(diǎn)P是二次函數(shù)圖象在y軸左側(cè)部分上的一個(gè)動(dòng)點(diǎn),將直線y=﹣2x沿y軸向下平移,分別交x軸、y軸于C、D兩點(diǎn),若以CD為直角邊的△PCD與△OCD相似,請(qǐng)求出所有符合條件點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.2a2+a=3a3
B.(﹣a)2÷a=a
C.(﹣a)3a2=﹣a6
D.(2a2)3=6a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市老板到批發(fā)中心選購甲、乙兩種品牌的水杯。甲進(jìn)貨單價(jià)為3元、乙進(jìn)貨單價(jià)為4元;考慮各種因素,預(yù)計(jì)購進(jìn)乙品牌水杯的數(shù)量y(個(gè))與甲品牌水杯的數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)若該超市每銷售1個(gè)甲水杯可獲利0.5元,每銷售1個(gè)乙水杯可獲利1元。請(qǐng)寫出獲利W(元)與x(個(gè))的函數(shù)關(guān)系式;
(3)在(2)的條件下,超市老板決定用不超過700元購進(jìn)甲、乙兩種品牌的水杯,且這兩種品牌的水杯全部售出后獲利不低于149元,問該超市有幾種進(jìn)貨方案?哪種方案能使獲利最大?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F分別是線段BM,CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD∶AB=__________時(shí),四邊形MENF是正方形(只寫結(jié)論,不需證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com