【題目】已知關(guān)于的一元二次方程
(1)若方程有實數(shù)根,求實數(shù)的取值范圍;
(2)若方程兩實數(shù)根分別為,且滿足,求實數(shù)的值。
【答案】(1)m≥-1;(2)m=1.
【解析】
(1)根據(jù)判別式的意義得到△=[2(m+1)]2-4(m2-1)≥0,然后解不等式即可;(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=-(2m+1),x1x2=m2-1,再利用完全平方公式變形,得到(x1+x2)2-3x1x2-16=0,則[-2(m+1)]2-3(m2-1)-16=0,解方程得m=-9或m=1,然后利用m的取值范圍確定滿足條件的m的值即可.
(1)由題意有△=[2(m+1)]2-4(m2-1)≥0,
整理得8m+8≥0,
解得m≥-1,
∴實數(shù)m的取值范圍是m≥-1;
(2)由兩根關(guān)系,得x1+x2=-(2m+1),x1x2=m2-1,
(x1-x2)2=16-x1x2,
(x1+x2)2-3x1x2-16=0,
∴[-2(m+1)]2-3(m2-1)-16=0,
∴m2+8m-9=0,
解得m=-9或m=1,
∵m≥-1,
∴m=1.
科目:初中數(shù)學 來源: 題型:
【題目】黑白兩種顏色的正方形紙片,按如圖所示的規(guī)律拼成若干個圖案:
第4個圖案中有白色紙片________塊,第n個圖案中有白色紙片________塊。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“圓材埋壁”是我國著名的數(shù)學著作《九章算術(shù)》中的一個問題,“今有圓材,埋于壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?” 用現(xiàn)代的數(shù)學語言表達是:“如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為E,CE = 1寸,AB = 1尺,求直徑的長”. 依題意,CD長為( )
A. 寸 B. 13寸 C. 25寸 D. 26寸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣(其中m>0)與x軸分別交于A,B兩點(A在B的右側(cè)),與y軸交于點c.
(1)求△AOC的周長,(用含m的代數(shù)式表示)
(2)若點P為直線AC上的一點,且點P在第二象限,滿足OP2=PCPA,求tan∠APO的值及用含m的代數(shù)式表示點P的坐標;
(3)在(2)的情況下,線段OP與拋物線相交于點Q,若點Q恰好為OP的中點,此時對于在拋物線上且介于點C與拋物線頂點之間(含點C與頂點)的任意一點M(x0,y0)總能使不等式n≤及不等式2n﹣恒成立,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延長線于點F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示一架水平飛行的無人機AB的尾端點A測得正前方的橋的左端點P的
俯角為α其中tanα=2,無人機的飛行高度AH為500米,橋的長度為1255米.
①求點H到橋左端點P的距離;
②若無人機前端點B測得正前方的橋的右端點Q的俯角為30°,求這架無人機的長度AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題)如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,過點C作直線l平行于AB.∠EDF=90°,點D在直線L上移動,角的一邊DE始終經(jīng)過點B,另一邊DF與AC交于點P,研究DP和DB的數(shù)量關(guān)系.
(探究發(fā)現(xiàn))(1)如圖2,某數(shù)學興趣小組運用從特殊到一般的數(shù)學思想,發(fā)現(xiàn)當點D移動到使點P與點C重合時,通過推理就可以得到DP=DB,請寫出證明過程;
(數(shù)學思考)(2)如圖3,若點P是AC上的任意一點(不含端點A、C),受(1)的啟發(fā),這個小組過點D作DG⊥CD交BC于點G,就可以證明DP=DB,請完成證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分線 AD 與邊 BC 的垂直平分線 CD 相 交于點 D ,過點 D 分別作 DE⊥AB ,DF⊥AC ,垂足分別為 E 、F ,則 BE 的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在小明、小紅兩名同學中選拔一人參加2018年張家界市“經(jīng)典詩詞朗誦”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:
小明:80,85,82,85,83 小紅:88,79,90,81,72.
回答下列問題:
(1)求小明和小紅測試的平均成績;
(2)求小明和小紅五次測試成績的方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com