【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,D是⊙O上一點(diǎn),且∠EDC=30°,弦EF∥AB,則EF的長(zhǎng)度為( )
A.2 B.2 C. D.2
【答案】B
【解析】
試題分析:作輔助線,連接OC與OE.根據(jù)一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半,可知∠EOC的度數(shù);再根據(jù)切線的性質(zhì)定理,圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可將EF的長(zhǎng)求出.
解:連接OE和OC,且OC與EF的交點(diǎn)為M.
∵∠EDC=30°,
∴∠COE=60°.
∵AB與⊙O相切,
∴OC⊥AB,
又∵EF∥AB,
∴OC⊥EF,即△EOM為直角三角形.
在Rt△EOM中,EM=sin60°×OE=×2=,
∵EF=2EM,
∴EF=.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…若P(2015,m)是其中某段拋物線上一點(diǎn),則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)﹣37+(﹣12)﹣(﹣18)﹣13
(2)(﹣1)×+(﹣1)5×0
(3)﹣|﹣|×|﹣0.25|﹣(﹣5)
(4)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù)中,不是互為相反意義的量的是( )
A. 向東走20千米與向西走15千米 B. 收入200元與虧損30元
C. 超過(guò)0.05mm與不足0.03mm D. 上升10米和下降7米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖在△ABC中,∠B>∠C,AD是BC邊上的高,AE平分∠BAC.
(1)若∠B=40°,∠C=30°,則∠DAE= ;
(2)若∠B=80°,∠C=40°,則∠DAE= ;
(3)由(1)、(2)我能猜想出∠DAE與∠B、∠C之間的關(guān)系為 .理由如下:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)多個(gè)城市遭遇霧霾天氣,空氣中可吸入顆粒(又稱PM2.5)濃度升高,為應(yīng)對(duì)空氣污染,小強(qiáng)家購(gòu)買了空氣凈化器,該裝置可隨時(shí)顯示室內(nèi)PM2.5的濃度,并在PM2.5濃度超過(guò)正常值25(mg/m3)時(shí)吸收PM2.5以凈化空氣.隨著空氣變化的圖象(如圖),請(qǐng)根據(jù)圖象,解答下列問(wèn)題:
(1)寫(xiě)出題中的變量;
(2)寫(xiě)出點(diǎn)M的實(shí)際意義;
(3)求第1小時(shí)內(nèi),y與t的一次函數(shù)表達(dá)式;
(4)已知第5﹣6小時(shí)是小強(qiáng)媽媽做晚餐的時(shí)間,廚房?jī)?nèi)油煙導(dǎo)致PM2.5濃度升高.若該凈化器吸收PM2.5的速度始終不變,則第6小時(shí)之后,預(yù)計(jì)經(jīng)過(guò)多長(zhǎng)時(shí)間室內(nèi)PM2.5濃度可恢復(fù)正常?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖, AB∥CD, OE平分∠BOC, OF⊥OE, OP⊥CD, ∠ABO=a°, 則下列結(jié)論:
①∠BOE=(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.
其中正確的個(gè)數(shù)有多少個(gè)? --------------( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC>AB,點(diǎn)P為△ABC所在平面內(nèi)一點(diǎn),且點(diǎn)P與△ABC的任意兩個(gè)頂點(diǎn)構(gòu)成△PAB,△PBC,△PAC均是等腰三角形,則滿足上述條件的所有點(diǎn)P的個(gè)數(shù)為 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(3,a)關(guān)于y軸的對(duì)稱點(diǎn)為Q(b,2),則a+b=_________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com