的值.

答案:
解析:

  設=k,則a=(b+c)k,b=(c+a)k,c=(a+b)k.

  即(a+b+c)=2k(a+b+c).∴(a+b+c)(1-2k)=0

  ∴當a+b+c=0時,=-1;當a+b+c≠0時,1-2k=0,∴k=

  ∴=-1或


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2010四川樂山)如圖(13.1),拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C(0,2),連接AC,若tan∠OAC=2.

(1)求拋物線對應的二次函數(shù)的解析式;

(2)在拋物線的對稱軸l上是否存在點P,使∠APC=90°,若存在,求出點P的坐標;若不存在,請說明理由;

(3)如圖(13.2)所示,連接BC,M是線段BC上(不與B、C重合)的一個動點,過點M作直線l′∥l,交拋物線于點N,連接CN、BN,設點M的橫坐標為t.當t為何值時,△BCN的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分8分)
已知拋物線yax2bx+6與x軸交于A、B兩點(點A在原點的左側,點B在原點的右側),與y軸交于點C,且OB=OC,tan∠ACO=,頂點為D
【小題1】(1)求點A的坐標.
【小題2】(2)求直線CDx軸的交點E的坐標.
【小題3】(3)在此拋物線上是否存在一點F,使得以點A、C、E、F為頂點的四邊形是平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
【小題4】(4)若點M(2,y)是此拋物線上一點,點N是直線AM上方的拋物線上一動點,當點N運動到什么位置時,四邊形ABMN的面積S最大? 請求出此時S的最大值和點N的坐標.
【小題5】(5)點P為此拋物線對稱軸上一動點,若以點P為圓心的圓與(4)中的直線AMx軸同時相切,則此時點P的坐標為      .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(13.1),拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C(0,2),連接AC,若tan∠OAC=2.

(1)求拋物線對應的二次函數(shù)的解析式;
(2)在拋物線的對稱軸l上是否存在點P,使∠APC=90°,若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖(13.2)所示,連接BC,M是線段BC上(不與B、C重合)的一個動點,過點M作直線l′∥l,交拋物線于點N,連接CN、BN,設點M的橫坐標為t.當t為何值時,△BCN的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(云南紅河) 題型:解答題

如圖(13.1),拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C(0,2),連接AC,若tan∠OAC=2.

(1)求拋物線對應的二次函數(shù)的解析式;
(2)在拋物線的對稱軸l上是否存在點P,使∠APC=90°,若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖(13.2)所示,連接BC,M是線段BC上(不與B、C重合)的一個動點,過點M作直線l′∥l,交拋物線于點N,連接CN、BN,設點M的橫坐標為t.當t為何值時,△BCN的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京朝陽區(qū)九年級第一學期期末考試數(shù)學卷 題型:解答題

(本小題滿分8分)
已知拋物線yax2bx+6與x軸交于A、B兩點(點A在原點的左側,點B在原點的右側),與y軸交于點C,且OB=OCtan∠ACO=,頂點為D
【小題1】(1)求點A的坐標.
【小題2】(2)求直線CDx軸的交點E的坐標.
【小題3】(3)在此拋物線上是否存在一點F,使得以點AC、E、F為頂點的四邊形是平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
【小題4】(4)若點M(2,y)是此拋物線上一點,點N是直線AM上方的拋物線上一動點,當點N運動到什么位置時,四邊形ABMN的面積S最大? 請求出此時S的最大值和點N的坐標.
【小題5】(5)點P為此拋物線對稱軸上一動點,若以點P為圓心的圓與(4)中的直線AMx軸同時相切,則此時點P的坐標為      .

查看答案和解析>>

同步練習冊答案