【題目】a、b、c在數(shù)軸上的位置如圖所示,則:

(1)“<、>、=”填空:a____0,b____0,c_____0;

(2)“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;

(3)化簡(jiǎn):|﹣a|﹣|a﹣b|+|c﹣a|

【答案】.1<,<,>;2>,<,>;3-b+c-a

【解析】

試題(1)觀察ab、c在數(shù)軸上的位置,即可得a、b、c的符號(hào);(2)根據(jù)a、b、c的符號(hào)和有理數(shù)的運(yùn)算法則即可解答;(3)根據(jù)(2)及絕對(duì)值的性質(zhì)即可解答.

試題解析:(1<,<,>;

2>,<,> ;

3=-a-b-a+c-a=-a-b+a+c-a=c-b-a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)自然數(shù)的立方,可以分裂成若干個(gè)連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個(gè)、3個(gè)和4個(gè)連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進(jìn)行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=30°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1

(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線時(shí),求∠CC1A1的度數(shù);
(2)已知AB=6,BC=8,
①如圖2,連接AA1 , CC1 , 若△CBC1的面積為16,求△ABA1的面積;
②如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)的過程中,點(diǎn)P的對(duì)應(yīng)是點(diǎn)P1 , 直接寫出線段EP1長(zhǎng)度的最大值.
(3)線段EP1長(zhǎng)度的最大值為11,理由如下:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,AC=BD,ACBD中選兩個(gè)作為補(bǔ)充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是(  )

A. ①② B. ②③ C. ①③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y是關(guān)于x的一次函數(shù),且當(dāng)x=1時(shí),y=﹣4;當(dāng)x=2時(shí),y=﹣6.

(1)求y關(guān)于x的函數(shù)表達(dá)式;

(2)若﹣2<x<4,求y的取值范圍;

(3)試判斷點(diǎn)P(a,﹣2a+3)是否在函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上兩個(gè)點(diǎn)A、B所對(duì)應(yīng)的數(shù)為a、b,且a、b滿足.

(1)求AB的長(zhǎng);

(2)若甲、乙分別從A、B兩點(diǎn)同時(shí)在數(shù)軸上相向運(yùn)動(dòng),甲的速度是2個(gè)單位/秒,乙的速度比甲的速度快3個(gè)單位/秒,求甲乙相遇點(diǎn)所表示的數(shù);

(3)若點(diǎn)C對(duì)應(yīng)的數(shù)為—1,在數(shù)軸上A點(diǎn)的左側(cè)是否存在一點(diǎn)P,使PA+PB=3PC?若存在,求出點(diǎn)P所對(duì)應(yīng)的數(shù);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是_______(只填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y1=﹣x+1x軸交于點(diǎn)A,與直線y2=﹣x交于點(diǎn)B.

(1)求AOB的面積;

(2)求y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸子A、B兩點(diǎn),與反比例函數(shù)y的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E,已知點(diǎn)C的坐標(biāo)是(6,-1),DE=3.

(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

同步練習(xí)冊(cè)答案