【題目】如圖,⊙O的半徑為,四邊形ABCD為⊙O的內(nèi)接矩形,AD=6,MDC中點(diǎn),E為⊙O上的一個動點(diǎn),連結(jié)DE,作DFDE交射線EAF,連結(jié)MF,則MF的最大值為_____

【答案】

【解析】

如圖,連接ACBD于點(diǎn)O,以AD為邊向上作等邊△ADJ,連接JF,JA,JD,JM.判斷出點(diǎn)F的運(yùn)動軌跡,即可解決問題.

解:如圖,連接ACBD于點(diǎn)O,以AD為邊向上作等邊△ADJ,連接JFJA,JDJM

四邊形ABCD是矩形,

∴∠ADC=90°

∵AD=6,AC=,

∴sin∠ACD=,

∴∠ACD=60°

∴∠FED=∠ACD=60°,

∵DF⊥DE,

∴∠EDF=90°,

∴∠EFD=30°,

∵△JAD是等邊三角形,

∴∠AJD=60°,

∴∠AFD=∠AJD

點(diǎn)F的運(yùn)動軌跡是以J為圓心JA為半徑的圓,

當(dāng)點(diǎn)FMJ的延長線上時,FM的值最大,

此時FJ=6,JM=,

FM的最大值為

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的圓于點(diǎn),交于點(diǎn),以點(diǎn)為頂點(diǎn)作,使得,交延長線于點(diǎn),連接,延長于點(diǎn)

1)求證:的切線;

2)求證:;

3)若,且,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】上海世博會已于2010430日開幕,各國游客都被吸引到了這個地方,據(jù)統(tǒng)計(jì)到510號為止最高單日接待量已達(dá)到100萬人次,其中中國館自然是最受歡迎的展館,在世博會開園第一天共接待了游客3萬余人,而外國場館中最受歡迎的依次是瑞士館、法國館、德國館、西班牙館、日本館.現(xiàn)將某天世博會最受歡迎的6個館的參觀人數(shù)用統(tǒng)計(jì)圖①②分別表示如下:

請根據(jù)統(tǒng)計(jì)圖回答下列問題:

(1)這一天參觀這6個場館的總?cè)藬?shù)為 __ ,其中參觀日本館的人數(shù)有__,德國館所在扇形的圓心角度數(shù)為__;

(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)小寶和小貝都想利用暑假去上海參觀世博會,恰好張伯伯有一張世博會的門票,小寶和小貝都想得到這張門票.于是他們決定用轉(zhuǎn)轉(zhuǎn)盤的游戲來決定這張票由誰獲得,游戲規(guī)則如下:將一質(zhì)地均勻的轉(zhuǎn)盤等分成5個面積相等的扇形,上面分別標(biāo)有數(shù)字 -l,4,5,-6,0,小寶和小貝均隨機(jī)地轉(zhuǎn)轉(zhuǎn)盤一次,把指針指向區(qū)域內(nèi)的數(shù)字分別記為x、y.若指針指在邊界,則重新轉(zhuǎn)一次直到指針指向一個區(qū)域內(nèi)為止,然后他們計(jì)算出xy的值.規(guī)定:當(dāng)xy的值為負(fù)數(shù)時,門票歸小寶;xy的值為正數(shù)時,門票歸小貝.請利用表格或樹狀圖游戲?qū)﹄p方公平嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝加工廠甲、乙兩個車間共同加工一款休閑裝,且每人每天加工的件數(shù)相同,甲車間比乙車間少10人,甲車間每天加工服裝400件,乙車間每天加工服裝600件.

1)求甲、乙兩車間各有多少人;

2)甲車間更新了設(shè)備,平均每人每天加工的件數(shù)比原來多了10件,乙車間的加工效率不變,在兩個車間總?cè)藬?shù)不變的情況下,加工廠計(jì)劃從乙車間調(diào)出一部分人到甲車間,使每天兩個車間加工的總數(shù)不少于1314件,求至少要從乙車間調(diào)出多少人到甲車間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳A處測得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測得點(diǎn)C的仰角為45°,已知OA100米,山坡坡度=12,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置P的鉛直高度PB.(測傾器高度忽略不計(jì),結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)yk≠0,x0)的圖象同時經(jīng)過頂點(diǎn)CD.若點(diǎn)C的橫坐標(biāo)為5,BE3DE

1)求出k值.

2)求出OCD的面積

3)試探究坐標(biāo)軸上是否存在點(diǎn)P,使得PCD的面積等于菱形ABCD的面積的一半,如果存在,請直接寫出點(diǎn)P的坐標(biāo);如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是BC、CD上的點(diǎn),且∠EAF=45°,AE、AF分別交BDMN,連按ENEF,有以下結(jié)論:

ABM∽△NEM;AEN是等腰直角三角形;當(dāng)AE=AF時,;BE+DF=EF;若點(diǎn)FDC的中點(diǎn),則CECB

其中正確的個數(shù)是(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,則下列4個結(jié)論:①abc0;②2a+b0;③4a+2b+c0;④b24ac0;其中正確的結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一臺實(shí)物投影儀,圖2是它的示意圖,折線OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AOOM,垂足為點(diǎn)O,且AO7cm,∠BAO160°,BCOM,CD8cm

將圖2中的BC繞點(diǎn)B向下旋轉(zhuǎn)45°,使得BCD落在BCD′的位置(如圖3所示),此時CD′⊥OM,AD′∥OM,AD′=16cm,求點(diǎn)B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34cot70°≈0.36,結(jié)果精確到1cm

查看答案和解析>>

同步練習(xí)冊答案