【題目】如圖,正方形ABCD的邊長為4,點E是AB的中點,點P是邊BC上的動點,點Q是對角線AC上的動點(包括端點A,C),則EP+PQ的最小值是 .
【答案】
【解析】如圖作點E關于BC的對稱點E′,作E′Q′⊥AC于Q′交BC于P.
∴PE=PE′,
∴PQ+PE=PE′+PQ,
當Q用Q′重合時,PE+PQ最小(垂線段最短),
∵四邊形ABCD是正方形,
∴∠E′AQ′=45°,
∵AE′=6,
∴E′Q′=3
∴PE+PQ的最小值為3 .
【考點精析】利用勾股定理的概念和正方形的性質對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】若a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結論:
①以a2 , b2 , c2的長為邊的三條線段能組成一個三角形;②以,,的長為邊的三條線段能組成一個三角形;③以a+b,c+h,h的長為邊的三條線段能組成直角三角形;④以,,的長為邊的三條線段能組成直角三角形,正確結論的序號為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.
()請直接寫出袋子中白球的個數(shù).
()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩點在數(shù)軸上表示的數(shù)分別為a,b,下列式子成立的是( )
A.ab>0
B.a+b<0
C.(b-1)(a+1)>0
D.(b-1)(a-1)>0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com