【題目】如圖,把一個等腰直角三角形沿斜邊上的高剪下,與剩下部分能拼成一個平行四邊形,如圖(1).
(1)想一想,判斷四邊形是平行四邊形的依據(jù)是_____________________________________.(用平行四邊形的判定方法敘述)
(2)按上述方法做一做,請你拼一個與圖(1)位置或形狀不同的平行四邊形。并在圖(2)中面出示意圖.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
請說明對于任意實數(shù)方程總有兩個不相等的實數(shù)根;
若方程兩實數(shù)根為,,且滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型超市投入15000元資金購進(jìn)、兩種品牌的礦泉水共600箱,礦泉水的成本價和銷售價如下表所示:
類別/單價 | 成本價(元/箱) | 銷售價(元/箱) |
A品牌 | 20 | 32 |
B品牌 | 35 | 50 |
(1)該大型超市購進(jìn)、品牌礦泉水各多少箱?
(2)全部銷售完600箱礦泉水,該超市共獲得多少利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于點D;CE平分∠ACB,交AB于點E,交BD于點F.
(1)求證:△BEF是等腰三角形;
(2)求證:BD=(BC+BF).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結(jié)論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時,y>0.其中正確結(jié)論的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)是,動點從原點O出發(fā),沿著軸正方向移動,以為斜邊在第一象限內(nèi)作等腰直角三角形,設(shè)動點的坐標(biāo)為.
(1)當(dāng)時,點的坐標(biāo)是 ;當(dāng)時,點的坐標(biāo)是 ;
(2)求出點的坐標(biāo)(用含的代數(shù)式表示);
(3)已知點的坐標(biāo)為,連接、,過點作軸于點,求當(dāng)為何值時,當(dāng)與全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】安徽某水產(chǎn)養(yǎng)殖戶去年利用“稻蝦混養(yǎng)”使每千克小龍蝦養(yǎng)殖成本降為6元,在整個銷售旺季的80天里,銷售單價P(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:P=,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示.
(1)求日銷售y與時間t的函數(shù)關(guān)系式?
(2)設(shè)日銷售利潤為W(元),求W與t之間的函數(shù)表達(dá)式;
(3)日銷售利潤W哪一天最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com