9、如圖,在等邊三角形ABC中,三條中線AE,BD,CF相交于點O,則等邊三角形ABC中,從△BOF到△COD需要經(jīng)過的變換是( 。
分析:等邊三角形ABC中,三條中線AE,BD,CF相交于點O,則△BOF與△COD全等,又OB=OC,OF=OD,可得其關(guān)于OE對稱.
解答:解:∵△BOF與△COD是關(guān)于OE的軸對稱圖形,∴從△BOF到△COD需要經(jīng)過軸對稱變換.故選A
點評:掌握等邊三角形的性質(zhì),理解三角形之軸對稱變換,旋轉(zhuǎn)變換,平移變換及相似變換的涵義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC的邊BC、AC上分別取點D、E,使BD=CE,AD與BE相交于點P.則∠APE的度數(shù)為
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC中,BD⊥BC,過A作AD⊥BD于D,已知△ABC周長為M,則AD=( 。
A、
M
2
B、
M
6
C、
M
8
D、
M
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等邊三角形ABC的AC邊上取中點D,BC的延長線上取一點E,使CE=CD,求證:△BDE為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等邊三角形△ABC中,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,且PR=PS,下面給出的四個結(jié)論:①點P在∠A的平分線上,②AS=AR,③QP∥AR,④△BRP≌△QSP,則其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案