【題目】如圖所示,在△ABC與△ADE中,ABED=AEBC,要使△ABC與△ADE相似,還需要添加一個(gè)條件,這個(gè)條件是(只加一個(gè)即可)并證明.
【答案】∠B=∠E(答案不唯一)
【解析】解:條件①,∠B=∠E. 證明:∵ABED=AEBC,
∴ .
∵∠B=∠E,
∴△ABC∽△AED.
條件②, .
證明:∵ABED=AEBC,
∴ .
∵ ,
∴ = ,
∴△ABC∽△AED.
所以答案是:∠B=∠E(答案不唯一).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解相似三角形的判定(相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點(diǎn),EF與BD交于點(diǎn)H.
(1)求證:△EDH∽△FBH;
(2)若BD=6,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(0,4),C(0,3),過點(diǎn)C作直線交x軸于點(diǎn)D,使得以D,O,C為頂點(diǎn)的三角形與△AOB相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知反比例函數(shù)y= (k常數(shù),k≠1).
(1)若點(diǎn)A(2,1)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一個(gè)分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=9,試判斷點(diǎn)B(﹣ ,﹣16)是否在這個(gè)函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c過點(diǎn)A(4,0),B(﹣4,﹣4).
(1)求拋物線的解析式;
(2)若點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過P作y軸的平行線,分別交拋物線及x軸于C、D兩點(diǎn).請(qǐng)問是否存在這樣的點(diǎn)P,使PD=2CD?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連結(jié)AA1 , 若∠AA1B1=15°,則∠B的度數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com