【題目】如圖所示,在△ABC與△ADE中,ABED=AEBC,要使△ABC與△ADE相似,還需要添加一個(gè)條件,這個(gè)條件是(只加一個(gè)即可)并證明.

【答案】∠B=∠E(答案不唯一)
【解析】解:條件①,∠B=∠E. 證明:∵ABED=AEBC,

∵∠B=∠E,
∴△ABC∽△AED.
條件②,
證明:∵ABED=AEBC,

,
=
∴△ABC∽△AED.
所以答案是:∠B=∠E(答案不唯一).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解相似三角形的判定(相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EF∥AB,DE:EA=2:3,EF=4,則CD的長為(
A.
B.8
C.10
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠A=105°,∠B=30°,AC=2.求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點(diǎn),EF與BD交于點(diǎn)H.
(1)求證:△EDH∽△FBH;
(2)若BD=6,求DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中若BE:EC=4:5,則BF:FD=(
A.4:5
B.4:10
C.4:9
D.5:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(0,4),C(0,3),過點(diǎn)C作直線交x軸于點(diǎn)D,使得以D,O,C為頂點(diǎn)的三角形與△AOB相似,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知反比例函數(shù)y= (k常數(shù),k≠1).
(1)若點(diǎn)A(2,1)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一個(gè)分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=9,試判斷點(diǎn)B(﹣ ,﹣16)是否在這個(gè)函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c過點(diǎn)A(4,0),B(﹣4,﹣4).
(1)求拋物線的解析式;
(2)若點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過P作y軸的平行線,分別交拋物線及x軸于C、D兩點(diǎn).請(qǐng)問是否存在這樣的點(diǎn)P,使PD=2CD?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連結(jié)AA1 , 若∠AA1B1=15°,則∠B的度數(shù)是

查看答案和解析>>

同步練習(xí)冊(cè)答案