【題目】如圖,在ABCD中,點OACBD的交點,過點O的直線與BA的延長線,DC的延長線分別交于點EF.

(1)求證:△AOE≌△COF.

(2)連接ECAF,則EFAC滿足什么數(shù)量關(guān)系時,四邊形AECF是矩形?請說明理由.

【答案】1)證明見解析 2)答案見解析

【解析】

1)根據(jù)平行四邊形的性質(zhì)和全等三角形的證明方法證明即可;

2)連接EC、AF,則EFAC滿足EFAC時,四邊形AECF是矩形,首先證明四邊形AECF是平行四邊形,再根據(jù)對角線相等的平行四邊形為矩形即可證明.

(1)證明:∵四邊形ABCD是平行四邊形,

OAOC,ABCD

∴∠AEO=CFO.

AOECOF中,

∴△AOE≌△COF(AAS)

(2)解:當(dāng)ACEF時,四邊形AECF是矩形.

理由如下:

由(1)知AOE≌△COF,OE=OF.

AOCO,

∴四邊形AECF是平行四邊形.

又∵ACEF,∴四邊形AECF是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC=a,AC=b,AB=c,設(shè)c為最長邊,當(dāng)a2+b2=c2時,ABC是直角三角形;當(dāng)a2+b2≠c2時,利用代數(shù)式a2+b2和c2的大小關(guān)系,探究ABC的形狀(按角分類).

(1)當(dāng)ABC三邊分別為6、8、9時,ABC為   三角形;當(dāng)ABC三邊分別為6、8、11時,ABC為   三角形.

(2)猜想,當(dāng)a2+b2   c2時,ABC為銳角三角形;當(dāng)a2+b2   c2時,ABC為鈍角三角形.

(3)判斷當(dāng)a=2,b=4時,ABC的形狀,并求出對應(yīng)的c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用4400元購進AB兩種新式服裝,按標(biāo)價售出后可獲得毛利潤2800元(毛利潤=售價﹣進價),這兩種服裝的進價,標(biāo)價如表所示.

類型價格

A

B

 進價(元/件)

60

100

 標(biāo)價(元/件)

100

160

(1)請利用二元一次方程組求這兩種服裝各購進的件數(shù);

(2)如果A種服裝按標(biāo)價的9折出售,B種服裝按標(biāo)價的8折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見下表:

海拔高度(單位:米)

0

100

200

300

400

平均氣溫(單位:℃)

22

21.5

21

20.5

20


(1)若海拔高度用x(米)表示,平均氣溫用y(℃)表示,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若某種植物適宜生長在18℃~20℃(包含18℃,也包含20℃)山區(qū),請問該植物適宜種植在海拔為多少米的山區(qū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=﹣1,求該拋物線與x軸公共點的坐標(biāo);
(Ⅱ)若a=b=1,且當(dāng)﹣1<x<1時,拋物線與x軸有且只有一個公共點,求c的取值范圍;
(Ⅲ)若a+b+c=0,且x1=0時,對應(yīng)的y1>0;x2=1時,對應(yīng)的y2>0,試判斷當(dāng)0<x<1時,拋物線與x軸是否有公共點?若有,請證明你的結(jié)論;若沒有,闡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明

如圖,FG//CD,∠1=∠3,∠B=50°,求BDE的度數(shù).

:∵FG//CD (已知)

∴∠2=_________(____________________________)

又∵∠1=∠3,

∴∠3=∠2(等量代換)

BC//__________(_____________________________)

∴∠B+________=180°(______________________________)

又∵∠B=50°

∴∠BDE=________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A、C分別在x軸上、y軸上,CB//OAOA=8,若點B的坐標(biāo)為(a,b),b=.

(1)直接寫出點A、BC的坐標(biāo);

(2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間;

(3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)政府提出的綠色發(fā)展·低碳出行號召,某社區(qū)決定購置一批共享單車.經(jīng)市場調(diào)查得知,購買6輛男式單車與8輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16 000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50 000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MN是⊙O的切線,B為切點,BC是⊙O的弦且∠CBN=45°,過C的直線與⊙O,MN分別交于A,D兩點,過C作CE⊥BD于點E.、

(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.

查看答案和解析>>

同步練習(xí)冊答案