【題目】如圖,點(diǎn)B,C,D都在⊙O上,過C點(diǎn)作CA∥BD交OD的延長線于點(diǎn)A,連接BC,∠B=∠A=30°,BD=2 .
(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)
【答案】
(1)證明:連接OC,交BD于E,
∵∠B=30°,∠B= ∠COD,
∴∠COD=60°,
∵∠A=30°,
∴∠OCA=90°,
即OC⊥AC,
∴AC是⊙O的切線
(2)解:∵AC∥BD,∠OCA=90°,
∴∠OED=∠OCA=90°,
∴DE= BD= ,
∵sin∠COD= ,
∴OD=2,
在Rt△ACO中,tan∠COA= ,
∴AC=2 ,
∴S陰影= ×2×2 ﹣ =2 ﹣
【解析】(1)要證AC是⊙O的切線,連接OC,根據(jù)圓周角定理,可得出∠COD=60°,再證明OC⊥AC即可;
(2)由圖可知S陰影=SRt△OAC-S△OCD,求出兩個(gè)三角形的面積,就可以求出陰影部分的面積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將兩個(gè)邊長為1的小正方形分別沿對(duì)角線剪開,拼成正方形ABCD.
(1)正方形ABCD的面積為 ,邊長為 ,對(duì)角線BD= ;
(2)求證:;
(3)如圖②,將正方形ABCD放在數(shù)軸上,使點(diǎn)B與原點(diǎn)O重合,邊AB落在x軸的負(fù)半軸上,則點(diǎn)A所表示的數(shù)為 ,若點(diǎn)E所表示的數(shù)為整數(shù),則點(diǎn)E所表示的數(shù)為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖(1),連接AF、CE.
①四邊形AFCE是什么特殊四邊形?說明理由;
②求AF的長;
(2)如圖(2),動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過程中,已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行十佳歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)所給信息填空:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 | |
初中部 | 85 | ______ | 85 | _______ |
高中部 | _____ | 80 | ______ | 160 |
(2)你覺得高中部和初中部的決賽成績哪個(gè)更好?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式:a1==×(﹣);
第2個(gè)等式:a2==×(﹣);
第3個(gè)等式:a3==×();
第4個(gè)等式:a4==×();
…
請(qǐng)解答下列問題:
(1)按以上規(guī)律列出第5個(gè)等式:a5= = ;第n(n為正整數(shù))個(gè)等式:an= = ;
(2)求a1+a2+a3+a4+…+a100的值;
(3)數(shù)學(xué)符號(hào)f(x)=f(1)+f(2)+f(3)+…+f(n),試求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形FCDE,設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0).
(1)當(dāng)α=45°時(shí),求H點(diǎn)的坐標(biāo).
(2)當(dāng)α=60°時(shí),ΔCBD是什么特殊的三角形?說明理由.
(3)當(dāng)AH=HC時(shí),求直線HC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角板的三個(gè)內(nèi)角分別是90,45,45和90,60,30,按如圖所示疊放在一起,若固定三角形AOB,改變?nèi)切?/span>ACD的位置(其中點(diǎn)A位置始終不變),可以擺成不同的位置,使兩塊三角板至少有一組邊平行。設(shè)∠BAD=α(0<α<180)
(1)如圖1中,請(qǐng)你探索當(dāng)α為多少時(shí),CD∥OB,并說明理由;
(2)如圖2中,當(dāng)α=___時(shí),AD∥OB;
(3)在點(diǎn)A位置始終不變的情況下,你還能擺成幾種不同的位置,使兩塊三角板中至少有一組邊平行,請(qǐng)直接寫出符合要求的α的度數(shù)。(寫出三個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)點(diǎn)在第一,四象限及x軸上運(yùn)動(dòng),在第1次,它從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,﹣1),用了1秒,然后按圖中箭頭所示方向運(yùn)動(dòng),即(0,0)→(1,﹣1)→(2,0)→(3,1)→…,它每運(yùn)動(dòng)一次需要1秒,那么第2020秒時(shí)點(diǎn)所在的位置的坐標(biāo)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com