精英家教網 > 初中數學 > 題目詳情

【題目】ABC的三邊為a、b、c,由下列條件不能判斷它是直角三角形的是( 。

A. A: B: C =345 B. A=B+C

C. a2=(b+c)(b-c) D. a:b:c =12

【答案】A

【解析】分析:根據直角三角形的概念,角的特點和勾股定理的逆定理逐一判斷即可.

詳解:根據直角三角形的兩銳角互余,可知180°×=75°<90°,不是直角三角形,故正確;

根據三角形的內角和定理,根據∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正確;

根據平方差公式,化簡原式為a2=b2-c2,即a2+c2=b2,根據勾股定理的逆定理,可知是直角三角形,故不正確;

根據a、b、c的關系,可直接設a=x,b=2x,c=x,可知a2+c2=b2,可以構成直角三角形,故不正確.

故選:A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】2012年4月23日是第17個世界讀書日,《教育導報》記者就四川省農村中小學教師閱讀狀況進行了一次問卷調查,并根據調查結果繪制了教師每年閱讀書籍數量的統計圖(不完整).設x表示閱讀書籍的數量(x為正整數,單位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.請你根據兩幅圖提供的信息解答下列問題:

(1)本次共調查了多少名教師?
(2)補全條形統計圖;
(3)計算扇形統計圖中扇形D的圓心角的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖①,∠MON=60°,點A,B為射線OM,ON上的動點(點A,B不與點O重合),且AB=4 ,在∠MON的內部,△AOB的外部有一點P,且AP=BP,∠APB=120°.

(1)求AP的長;
(2)求證:點P在∠MON的平分線上.
(3)如圖②,點C,D,E,F分別是四邊形AOBP的邊AO,OB,BP,PA的中點,連接CD,DE,EF,FC,OP.
①當AB⊥OP時,請直接寫出四邊形CDEF的周長的值;
②若四邊形CDEF的周長用t表示,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME

正方形ABCD中,∠B=∠BCD=90°,AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面請你完成余下的證明過程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.

3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請你作出猜想:當∠AMN=°時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)

1 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,已知點A(﹣3,0)、B(0,4),對OAB連續(xù)作旋轉變換,依次得到1、2、34,則2017的直角頂點的坐標為.(  ).

A. (4032,0) B. (4032,) C. (8064,0) D. (8052, )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,DE∥BF,∠1與∠2互補.

1)試說明:FG∥AB;

2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工程隊(有甲、乙兩組)承接了世界園藝博覽會的一項小型工程任務,這項任務規(guī)定在若干天內完成.已知甲組單獨完成這項工程所需時間比規(guī)定時間多20天,乙組單獨完成這項工程所需時間比規(guī)定時間多10天.如果甲、乙兩組先合作15天,剩下的由甲單獨做,則正好如期完成,那么規(guī)定的時間是多少天?(列方程解應用題)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3交y軸于點C,直線l為拋物線的對稱軸,點P在第三象限且為拋物線的頂點.P到x軸的距離為 ,到y軸的距離為1.點C關于直線l的對稱點為A,連接AC交直線l于B.

(1)求拋物線的表達式;
(2)直線y= x+m與拋物線在第一象限內交于點D,與y軸交于點F,連接BD交y軸于點E,且DE:BE=4:1.求直線y= x+m的表達式;
(3)若N為平面直角坐標系內的點,在直線y= x+m上是否存在點M,使得以點O、F、M、N為頂點的四邊形是菱形?若存在,直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案