如圖1,小明將一張直角梯形紙片沿虛線(xiàn)剪開(kāi),得到矩形和三角形兩張紙片,測(cè)得AB=5,AD=4.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問(wèn)題,請(qǐng)你幫助解決.
(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過(guò)點(diǎn)A(如圖2),請(qǐng)你求出AE和FG的長(zhǎng)度.
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線(xiàn)BC向右平移,至F點(diǎn)與B重合時(shí)停止.在平移過(guò)程中,設(shè)G點(diǎn)平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個(gè)過(guò)程中,y與x的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為10時(shí),平移距離x的值(如圖3).
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過(guò)程中,雖然有時(shí)平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時(shí)候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請(qǐng)?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫(xiě)出結(jié)果).
由AB=BE,BM⊥AE,∴.∴.由△BEM∽△FEB,,∴FG=10. ..3分
(2)當(dāng)0≤x≤4時(shí),;當(dāng)4<x≤10時(shí),y=-2x+24,當(dāng)y=10時(shí),x=7或. .6分
考點(diǎn):1.勾股定理;2.相似三角形的判定與性質(zhì);3.分段函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知點(diǎn)P是拋物線(xiàn)上的一動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=MP,MD=OM,OE=ON,NF=NP.問(wèn):在拋物線(xiàn)上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請(qǐng)求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,等腰梯形MNPQ的上底長(zhǎng)為2,腰長(zhǎng)為3,一個(gè)底角為60°.正方形ABCD的邊長(zhǎng)為1,它的一邊AD在MN上,且頂點(diǎn)A與M重合.現(xiàn)將正方形ABCD在梯形的外面沿邊MN、NP、PQ進(jìn)行翻滾,翻滾到有一個(gè)頂點(diǎn)與Q重合即停止?jié)L動(dòng).
求正方形在整個(gè)翻滾過(guò)程中點(diǎn)A所經(jīng)過(guò)的路線(xiàn)與梯形MNPQ的三邊MN、NP、PQ所圍成圖形的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),△OAB沿x軸向左平移后得到△O′A′B′,點(diǎn)A的對(duì)應(yīng)點(diǎn)在直線(xiàn)上一點(diǎn),則點(diǎn)B與其對(duì)應(yīng)點(diǎn)B′間的距離為【 】
A. B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線(xiàn)與x軸相交于O、B,頂點(diǎn)為A,連接OA.
(1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線(xiàn)向右平移4個(gè)單位,再向上平移2個(gè)單位,再向上翻轉(zhuǎn),得到拋物線(xiàn)m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說(shuō)明理由;
(3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線(xiàn)上,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
操作發(fā)現(xiàn)
將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長(zhǎng)直角邊DE重合.
問(wèn)題解決
將圖①中的等腰直角三角板ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)30°,點(diǎn)C落在BF上,AC與BD交于點(diǎn)O,連接CD,如圖②.
(1)求證:AD∥BF;
(2)若AD=2,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:(2,4),(6,8,10,12),(14,16,18,20,22,24),…,現(xiàn)用等式AM=(i,j)表示正偶數(shù)M是第i組第j個(gè)數(shù)(從左往右數(shù)),如A10=(2,3),則A2014=【 】
A.(31,15) B.(31,16) C.(32,15) D.(32,16)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com