【題目】已知:如圖,⊙O的兩條半徑OA⊥OB,C,D是的三等分點(diǎn),OC,OD分別與AB相交于點(diǎn)E,F.
求證:CD=AE=BF.
【答案】見解析
【解析】
連接AC、BD,由C,D是的三等分點(diǎn),可得AC=CD=BD,∠AOC=∠COD=∠DOB=30°,利用SAS可證明△AOC≌△COD,即可得出∠ACO=∠OCD,根據(jù)等腰三角形的性質(zhì)可得∠OEF=∠OCD,可證明CD//AB,可得∠AEC=∠OCD,即可證明∠ACO=∠AEC.可得AC=AE,同理可證BD=BF,進(jìn)而可證明CD=AE=BF.
連接AC、BD,
∵OA⊥OB,
∴∠AOB=90°,
∵OA=OB,
∴∠OAB=∠OBA=45°,
∵C,D是的三等分點(diǎn),
∴AC=CD=BD,∠AOC=∠COD=∠DOB=30°,
∵∠AOC=∠COD,OA=OC=OD,
∴△AOC≌△COD,
∴∠ACO=∠OCD,
∵∠OEF=∠OAE+∠AOE=45°+30°=75°,∠OCD==75°,
∴∠OEF=∠OCD,
∴CD∥AB,
∴∠AEC=∠OCD,
∴∠ACO=∠AEC.
故AC=AE,
同理,BF=BD.
又∵AC=CD=BD
∴CD=AE=BF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】父親節(jié)即將到來之際,某商店準(zhǔn)備購進(jìn)、兩種男裝進(jìn)行銷售,其中每套種男裝的進(jìn)價比每套種男裝的進(jìn)價多元用元購進(jìn)種男裝的數(shù)量是用元購進(jìn)種男裝數(shù)量的倍.
(1)求每套種男裝和每套種男裝的進(jìn)價各是多少元:
(2)若該商店本次購進(jìn)種男裝的數(shù)量比購進(jìn)種男裝的數(shù)量的倍還多套,該商店每套種男裝的銷售價格為元,每套種男裝的銷售價格為元,若將本次購進(jìn)的、兩種男裝全部售出后獲得的利潤不少于元,那么該商店至少需要購進(jìn)種男裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過點(diǎn).
(1)求二次函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)到軸的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k≠0)與反比例函數(shù)(m≠0)的圖象交于點(diǎn)A(﹣1,6),B(a,﹣2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批單價為16元的日用品,銷售一段時間后,為了獲取更多利潤, 商店決定提高銷售價格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件; 若按每件25元的價格銷售時,每月能賣210件.假定每月銷售件數(shù)y(件)是價格x( 元/件)的一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)在商品不積壓,且不考慮其他因素的條件下,問銷售價格為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市將開展演講比賽活動,某校對參加選拔的學(xué)生的成績按A、B、C、D四個等級進(jìn)行統(tǒng)計,繪制了如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,
成績等級 | 頻數(shù) | 頻率 |
A | 4 | n |
B | m | 0.51 |
C | ||
D | 15 |
(1)求m、n的值;
(2)求“C等級”所對應(yīng)的扇形圓心角的度數(shù);
(3)已知成績等級為A的4名學(xué)生中有1名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名學(xué)生代表學(xué)校參加全市比賽,求出恰好選中一男生和一女生的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學(xué)教材第94頁的部分內(nèi)容.
線段垂直平分線
我們已知知道線段是軸對稱圖形,線段的垂直一部分線是線段的對稱軸,如圖直線是線段的垂直平分線,是上任一點(diǎn),連結(jié)、,將線段與直線對稱,我們發(fā)現(xiàn)與完全重合,由此都有:線段垂直平分線的性質(zhì)定理,線段垂直平分線上的點(diǎn)到線段的距離相等.
已知:如圖,,垂足為點(diǎn),,點(diǎn)是直線上的任意一點(diǎn).
求證:.
圖中的兩個直角三角形和,只要證明這兩個三角形全等,便可證明(請寫出完整的證明過程)
請根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程,定理應(yīng)用.
(1)如圖②,在中,直線、、分別是邊、、的垂直平分線.
求證:直線、、交于點(diǎn).
(2)如圖③,在中,,邊的垂直平分線交于點(diǎn),邊的垂直平分線交于點(diǎn),若,,則的長為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com