如圖1,B是長度為1的線段AE上任意一點,在AE的同一側(cè)分別作正方形ABCD和長方形BEFG,且EF=2BE.

(1)點B在何處時,正方形ABCD的面積與長方形BEFG的面積和最小,最小值為多少?
(2)若點C與點G重合,M為AB中點,N為EF中點,MN與BC交于點H(如圖2所示),將△OMA沿直線DM,△MNE沿直線MN分別向矩形AEFD內(nèi)折疊,求四邊形DMNF未被兩個折疊三角形覆蓋的圖形面積.
(1)設(shè)BE=x,則AB=1-x,EF=2x,根據(jù)題意得:
S=(x-1)2+2x2=3x2-2x+1,
當(dāng)x=
1
3
,即BE=
1
3
,S最小=
2
3


(2)當(dāng)BE=
1
3
時,AB=AD=
2
3
,
所以四邊形DMNF未被兩個折疊三角形覆蓋的圖形面積為:
2
3
-4×
1
2
×
1
3
×
2
3
=
2
9
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市人民廣場上要建造一個圓形的噴水池,并在水池中央垂直安裝一個柱子OP,柱子頂端P處裝上噴頭,由P處向外噴出的水流(在各個方向上)沿形狀相同的拋物線路徑落下(如圖所示).若已知OP=3米,噴出的水流的最高點A距水平面的高度是4米,離柱子OP的距離為1米.
(1)求這條拋物線的解析式;
(2)若不計其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=2x+2交y軸于點A,交x軸于點B,直線l:y=-3x+9
(1)求經(jīng)過A、B、C三點的拋物線的函數(shù)關(guān)系式,并指出此函數(shù)的函數(shù)值隨x的增大而增大時,x的取值范圍;
(2)若點E在(1)中的拋物線上,且四邊形ABCE是以BC為底的梯形,求梯形ABCE的面積;
(3)在(1)、(2)的條件下,過E作直線EF⊥x軸,垂足為G,交直線l于F.在拋物線上是否存在點H,使直線l、FH和x軸所圍成的三角形的面積恰好是梯形ABCE面積的
1
2
?若存在,求點H的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c經(jīng)過點(1,-4)和(-1,2).求拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將△AOB置于平面直角坐標(biāo)系中,其中點O為坐標(biāo)原點,點A的坐標(biāo)為(3,0),∠ABO=60度.
(1)若△AOB的外接圓與y軸交于點D,求D點坐標(biāo).
(2)若點C的坐標(biāo)為(-1,0),試猜想過D,C的直線與△AOB的外接圓的位置關(guān)系,并加以說明.
(3)二次函數(shù)的圖象經(jīng)過點O和A且頂點在圓上,求此函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,過O且半徑為5的⊙P交x的正半軸于點M(2m,0)、交y軸的負(fù)半軸于點D,弧OBM與弧OAM關(guān)于x軸對稱,其中A、B、C是過點P且垂直于x軸的直線與兩弧及圓的交點.
(1)當(dāng)m=4時,
①填空:B的坐標(biāo)為______,C的坐標(biāo)為______,D的坐標(biāo)為______;
②若以B為頂點且過D的拋物線交⊙P于點E,求此拋物線的函數(shù)關(guān)系式和寫出點E的坐標(biāo);
③除D點外,直線AD與②中的拋物線有無其它公共點并說明理由.
(2)是否存在實數(shù)m,使得以B、C、D、E為頂點的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(m,0)、B(n,0)兩點,與y軸交于點C(0,3),點P是拋物線的頂點,若m-n=-2,m•n=3.
(1)求拋物線的表達(dá)式及P點的坐標(biāo);
(2)求△ACP的面積S△ACP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,OB=
3
,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點O與點D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點的拋物線y=ax2+bx+c的解析式;若拋物線的頂點為M,試判斷點M是否在直線BC上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標(biāo)系.拋物線y=ax2經(jīng)過A、O、D三點,圖②和圖③是把一些這樣的小正方形及其內(nèi)部拋物線部分經(jīng)過拼組得到的.

(1)a的值為______;
(2)圖②中矩形EFGH的面積為______;
(3)圖③中正方形PQRS的面積為______.

查看答案和解析>>

同步練習(xí)冊答案