【題目】如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),那么CH的長是
【答案】
【解析】解:∵正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,
∴AB=BC=1,CE=EF=3,∠E=90°,
延長AD交EF于M,連接AC、CF,
則AM=BC+CE=1+3=4,F(xiàn)M=EF﹣AB=3﹣1=2,∠AMF=90°,
∵四邊形ABCD和四邊形GCEF是正方形,
∴∠ACD=∠GCF=45°,
∴∠ACF=90°,
∵H為AF的中點(diǎn),
∴CH=AF,
在Rt△AMF中,由勾股定理得:AF===2 ,
∴CH= ,
所以答案是: .
【考點(diǎn)精析】利用正方形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x、y的單項(xiàng)式2axcy與單項(xiàng)式3bx3y是同類項(xiàng),并且2axcy+3bx3y=0 ,當(dāng)m 的倒數(shù)是-1,n的相反數(shù)是 時,求 的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連接BD并延長交BG于點(diǎn)T,交FG于點(diǎn)P,則ET的值為( 。
A.2
B.3
C.4
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生參加體育活動的情況,學(xué)校對學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少”,共有4個選項(xiàng):A 1.5小時以上;B 1~1.5小時;C 0.5~1小時;D 0.5小時以下.圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了多少名學(xué)生?
(2)在圖1中將選項(xiàng)B的部分補(bǔ)充完整;
(3)若該校有3000名學(xué)生,你估計全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動的時間在0.5小時以下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算(-8m4n+12m3n2-4m2n3)÷(-4m2n) 的結(jié)果是( )
A. 2m2n-3m+n2 B. 2m2-3nm2+n2
C. 2m2-3mn+n D. 2m2-3mn+n2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在兩個不透明的口袋中分別裝有三個顏色分別為紅色、白色、綠色的小球,這三個小球除顏色外其它都相同.
(1)在其中一個口袋中一次性隨機(jī)摸出兩個球.請寫出在這一過程中的一個必然事件;
(2)若分別從兩袋中隨機(jī)各取出一個小球,試求取出兩個小球顏色相同的概率(用列表法或畫樹狀圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD的中點(diǎn),∠EBC的平分線交CD于點(diǎn)F,將△DEF沿EF折疊,點(diǎn)D恰好落在BE上M點(diǎn)處,延長BC、EF交于點(diǎn)N.有下列四個結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF.其中,將正確結(jié)論的序號全部選對的是( )
A. ①②③
B. ①②④
C. ②③④
D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個相似三角形對應(yīng)邊之比是1:4,那么它們的對應(yīng)高線之比是( 。
A.1:4B.1:6C.1:8D.1:16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com