【題目】已知拋物線C1:y=ax2﹣4ax﹣5的開口向上.
(1)當(dāng)a=1時(shí),求拋物線與x軸的交點(diǎn)坐標(biāo);
(2)試說(shuō)明拋物線C1一定經(jīng)過兩個(gè)定點(diǎn),并求出這兩個(gè)定點(diǎn)的坐標(biāo);
(3)將拋物線C1沿(2)所求的兩個(gè)定點(diǎn)所在直線翻折,得到拋物線C2,
①寫出拋物線C2的表達(dá)式;
②當(dāng)拋物線C2的頂點(diǎn)到x軸的距離為2,求a的值.
【答案】(1)拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0)或(5,0);(2)拋物線C1一定經(jīng)過兩個(gè)定點(diǎn)(0,﹣5),(4,﹣5);(3)①拋物線C2解析式為y=﹣ax2+4ax﹣5,②a=或.
【解析】
(1)將a=1代入函數(shù)解析式,即可求出函數(shù)的解析式,然后令y=0,求出x的值即可解決.
(2)將解析式化成兩部分,一部分為常數(shù)項(xiàng),另一部分進(jìn)行因式分解寫成幾個(gè)因式相乘的形式,觀察解析式的特征,即可解決問題.
(3)①根據(jù)翻折的性質(zhì),拋物線開口方向相反,但對(duì)稱軸沒有發(fā)生變化,根據(jù)此可以得到拋物線C2解析式為:y=﹣ax2+4ax﹣5,②根據(jù)二次函數(shù)的性質(zhì),可知y=2或y=-2,對(duì)稱軸未發(fā)生變化,x=2,將兩者分別代入,求出a的值即可.
(1)當(dāng)a=1時(shí),拋物線解析式為y=x2﹣4x﹣5=(x﹣2)2﹣9,
∴對(duì)稱軸為x=2;
∴當(dāng)y=0時(shí),x﹣2=3或﹣3,即x=﹣1或5;
∴拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0)或(5,0);
(2)拋物線C1解析式為:y=ax2﹣4ax﹣5,
整理得:y=ax(x﹣4)﹣5;
∵當(dāng)ax(x﹣4)=0時(shí),y恒定為﹣5;
∴拋物線C1一定經(jīng)過兩個(gè)定點(diǎn)(0,﹣5),(4,﹣5);
(3)①這兩個(gè)點(diǎn)連線為y=﹣5;
將拋物線C1沿y=﹣5翻折,得到拋物線C2,開口方向變了,但是對(duì)稱軸沒變;
∴拋物線C2解析式為:y=﹣ax2+4ax﹣5,
②拋物線C2的頂點(diǎn)到x軸的距離為2,
則x=2時(shí),y=2或者﹣2;
當(dāng)y=2時(shí),2=﹣4a+8a﹣5,解得,a=;
當(dāng)y=﹣2時(shí),﹣2=﹣4a+8a﹣5,解得,a=;
∴a=或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=.
(1)求過點(diǎn)A,B的直線的函數(shù)表達(dá)式;
(2)在x軸上找一點(diǎn)D,連接BD,使得△ADB與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ與△ADB相似?如存在,請(qǐng)求出的m值;如不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高考英語(yǔ)聽力測(cè)試期間,需要杜絕考點(diǎn)周圍的噪音。如圖,點(diǎn)A是某市一高考考點(diǎn),在位于A考點(diǎn)南偏西15°方向距離125米的點(diǎn)處有一消防隊(duì)。在聽力考試期間,消防隊(duì)突然接到報(bào)警電話,告知在位于C點(diǎn)北偏東75°方向的F點(diǎn)處突發(fā)火災(zāi),消防隊(duì)必須立即趕往救火。已知消防車的警報(bào)聲傳播半徑為100米,若消防車的警報(bào)聲對(duì)聽力測(cè)試造成影響,則消防車必須改道行駛。試問:消防車是否需要改道行駛?說(shuō)明理由.(取1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司試銷一種成本單價(jià)為50元/件的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于80元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(如圖所示)
(I)根據(jù)圖象,求一次函數(shù)y=kx+b的解析式,并寫出自變量x的取值范圍;
(Ⅱ)該公司要想每天獲得最大的利潤(rùn),應(yīng)把銷售單價(jià)定為多少?最大利潤(rùn)值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(x0,m),Q(1,n)在二次函數(shù)y=(x+a)(x﹣a﹣1)(a≠0)的圖象上,且m<n下列結(jié)論:①該二次函數(shù)與x軸交于點(diǎn)(﹣a,0)和(a+1,0);②該二次函數(shù)的對(duì)稱軸是x=; ③該二次函數(shù)的最小值是(a+2)2; ④0<x0<1.其中正確的是_____.(填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校初三學(xué)生上周末使用手機(jī)的情況(選項(xiàng):A.聊天;B.學(xué)習(xí);C.購(gòu)物;D.游戲;E.其他),隨機(jī)抽查了該校初三若干名學(xué)生,對(duì)其上周末使用手機(jī)的情況進(jìn)行統(tǒng)計(jì)(每個(gè)學(xué)生只選一個(gè)選項(xiàng)),繪制了統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖.
選項(xiàng) | 人數(shù) | 頻率 |
A | 15 | 0.3 |
B | 10 | m |
C | 5 | 0.1 |
D | n | |
E | 5 | 0.1 |
根據(jù)以上信息回答下列問題:
(1)這次調(diào)查的樣本容量是 ;
(2)統(tǒng)計(jì)表中m= ,n= ,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校初三有540名學(xué)生,請(qǐng)估計(jì)該校初三學(xué)生上周末利用手機(jī)學(xué)習(xí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的半圓O內(nèi)有一條弦AC,點(diǎn)E是弦AC的中點(diǎn),連接BE,并延長(zhǎng)交半圓O于點(diǎn)D,若OB=2,OE=1,則∠CDE的度數(shù)是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,頂點(diǎn)為A,且經(jīng)過點(diǎn),點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,直線AB與x軸相交于點(diǎn)M,y軸相交于點(diǎn)E,拋物線與y軸相交于點(diǎn)F,在直線AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點(diǎn)Q是折線A﹣B﹣C上一點(diǎn),過點(diǎn)Q作QN∥y軸,過點(diǎn)E作EN∥x軸,直線QN與直線EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN1,若點(diǎn)N1落在x軸上,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(4,0)和(0,3),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)長(zhǎng)度單位的速度沿AO向O運(yùn)動(dòng),在點(diǎn)P出發(fā)的同時(shí),動(dòng)直線EF從x軸出發(fā),以每秒1個(gè)長(zhǎng)度單位沿y軸方向向上平移,分別與y軸、線段AB交于EP、FP.設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t≤2).
(1)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得△EOP與△AOB相似?若存在,請(qǐng)求出所有符合題意的t的值;若不存在,請(qǐng)說(shuō)明理由.
(2)若△PEF是等腰三角形,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com