【題目】在解決數(shù)學(xué)問(wèn)題的過(guò)程中,我們常用到“分類討論”的數(shù)學(xué)思想,下面是運(yùn)用分類討論的數(shù)學(xué)思想解決問(wèn)題的過(guò)程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的(探究).
(提出問(wèn)題)兩個(gè)有理數(shù)a、b滿足a、b同號(hào),求的值.
(解決問(wèn)題)解:由a、b同號(hào),可知a、b有兩種可能:①當(dāng)a,b都正數(shù);②當(dāng)a,b都是負(fù)數(shù).①若a、b都是正數(shù),即a>0,b>0,有|a|=a,|b|=b,則==1+1=2;②若a、b都是負(fù)數(shù),即a<0,b<0,有|a|=﹣a,|b|=﹣b,則==(﹣1)+(﹣1)=﹣2,所以的值為2或﹣2.
(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問(wèn)題:
(1)兩個(gè)有理數(shù)a、b滿足a、b異號(hào),求的值;
(2)已知|a|=3,|b|=7,且a<b,求a+b的值.
【答案】(1)0;(2) 4或10.
【解析】
(1)由a、b異號(hào)分2種情況討論:①a>0,b<0;②a<0,b>0,分別求解即可;
(2)利用絕對(duì)值的代數(shù)意義,以及a小于b,求出a與b的值,即可確定出a+b的值.
(1)由a、b異號(hào),可知:①a>0,b<0;②a<0,b>0,
當(dāng)a>0,b<0時(shí),=1-1=0;
當(dāng)a<0,b>0時(shí),=-1+1=0,
綜上,的值為0;
(2)∵|a|=3,|b|=7,
∴a=±3,b=±7,
又∵a<b,
∴a=3,b=7或a=-3,b=7,
當(dāng)a=3,b=7時(shí),a+b=10,
當(dāng)a=-3,b=7時(shí),a+b=4,
綜上,a+b的值為4或10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+6的圖象與坐標(biāo)軸交于A、B兩點(diǎn),AE平分∠BAO,交x軸于點(diǎn)E.
(1)求點(diǎn)B的坐標(biāo)及直線AE的表達(dá)式;
(2)過(guò)點(diǎn)B作BF⊥AE,垂足為F,在y軸上有一點(diǎn)P,使線段PE+PF的值最小,求點(diǎn)P的坐標(biāo);
(3)若將已知條件“AE平分∠BAO,交x軸于點(diǎn)E”改變?yōu)?/span>“點(diǎn)E是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)O、B重合)”,過(guò)點(diǎn)B作BF⊥AE,垂足為F,以EF為邊作正方形EFMN,當(dāng)點(diǎn)M落在坐標(biāo)軸上時(shí),求E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB、AC于點(diǎn)E、G.連接GF.下列結(jié)論:①∠AGD=112.5°;②AD:AE=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2 OG。其中正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在同心圓中,大圓的弦AB交小圓于C,D兩點(diǎn).
(1)求證:∠AOC=∠BOD;
(2)試確定AC與BD兩線段之間的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無(wú)論m取何值時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點(diǎn)間的距離為2時(shí),求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)A(﹣1,0),點(diǎn)B(0,﹣2),AD與y軸交于點(diǎn)E,且E為AD的中點(diǎn),雙曲線y=經(jīng)過(guò)C,D兩點(diǎn)且D(a,4)、C(2,b).
(1)求a、b、k的值;
(2)如圖2,線段CD能通過(guò)旋轉(zhuǎn)一定角度后點(diǎn)C、D的對(duì)應(yīng)點(diǎn)C′、D′還能落在y=的圖象上嗎?如果能,寫出你是如何旋轉(zhuǎn)的,如果不能,請(qǐng)說(shuō)明理由;
(3)如圖3,點(diǎn)P在雙曲線y=上,點(diǎn)Q在y軸上,若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將數(shù)軸按如圖所示從點(diǎn)A開始折出一等邊△ABC,設(shè)A表示的數(shù)為x-3, B表示的數(shù)為2x-5,C表示的數(shù)為5-x,則x=_______.將△ABC向右滾動(dòng),則點(diǎn)2016與點(diǎn)_____重合.(填A.B.C)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有甲、乙、丙等多家食品公司在某市開設(shè)蛋糕店,該市蛋糕店數(shù)量的扇形統(tǒng)計(jì)圖如圖所示,其中統(tǒng)計(jì)圖中沒(méi)有標(biāo)注相應(yīng)公司數(shù)量的百分比.已知乙公司經(jīng)營(yíng)150家蛋糕店,請(qǐng)根據(jù)該統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)求甲公司經(jīng)營(yíng)的蛋糕店數(shù)量和該市蛋糕店的總數(shù);
(2)甲公司為了擴(kuò)大市場(chǎng)占有率,決定在該市增設(shè)蛋糕店數(shù)量達(dá)到全市的20%,求甲公司需要增設(shè)的蛋糕店數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用17個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無(wú)縫隙的大長(zhǎng)方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個(gè)小立方體,王亮所搭幾何體的表面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com