【題目】如圖,△ABC中,AD是高,CE是中線,點G是CE的中點,DG⊥CE,點G為垂足.
(1)求證:DC=BE;
(2)若∠AEC=69°,求∠EDG的度數.
【答案】(1)詳見解析;(2)67°
【解析】
(1)由G是CE的中點,DG⊥CE得到DG是CE的垂直平分線,根據線段垂直平分線的性質得到DE=DC,由DE是Rt△ADB的斜邊AB上的中線,根據直角三角形斜邊上的中線等于斜邊的一半得到DE=BE=AB,即可得到DC=BE;
(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根據三角形外角性質得到∠EDB=∠DEC+∠BCE=2∠BCE,則∠B=2∠BCE,由此根據外角的性質來求∠BCE的度數即可解決問題.
解:(1)如圖,∵G是CE的中點,DG⊥CE,
∴DG是CE的垂直平分線,
∴DE=DC,
∵AD是高,CE是中線,
∴DE是Rt△ADB的斜邊AB上的中線,
∴DE=BE=AB,
∴DC=BE;
(2)∵DE=DC,
∴∠DEC=∠BCE,
∴∠EDB=∠DEC+∠BCE=2∠BCE,
∵DE=BE,
∴∠B=∠EDB,
∴∠B=2∠BCE,
∴∠AEC=3∠BCE=69°,
∴∠BCE=23°,
∵∠DGC=90°,
∴∠GDC=67°,
∵DE=DC,EG=CG,
∴∠EDG=∠GDC=67°.
科目:初中數學 來源: 題型:
【題目】某地電話撥號入網有兩種收費方式,用戶可以任選其一.
計時制:0.05元/分;
包月制:50元/月(限一部個人住宅電話上網).
此外,每一種上網方式都得加收通信費0.02元/分.
(1)某用戶某月上網的時間為x小時,請你分別寫出兩種收費方式下該用戶應該支付的費用.
(2)若某用戶估計一個月內上網的時間為20小時,你認為采用哪種方式較為合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課堂上,數學老師提出了如下問題:
如圖1,若線段AD為△ABC的角平分線,請問一定成立嗎?
小明和小芳分別作了如下探究:
小明發(fā)現(xiàn):如圖2,當△ABC為直角三角形時,且∠C=90°,∠CAB=60°時,結論成立;
小芳發(fā)現(xiàn):如圖3,當△ABC為任意三角形時,過點C作AB的平行線,交AD的延長線于點E,利用此圖可以證明成立.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從地出發(fā),勻速駛向地.甲車以的速度行駛后,乙車沿相同的路線出發(fā).乙車先到達地并停留后,再以原來的速度按原路線返回,直到與甲車相遇.在這個過程中,兩車之間的距離與乙車行駛的時間之間的函數關系如圖所示,則當兩車相距時,乙車出發(fā)的時間為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形EFGH是矩形ABCD的內接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,O是坐標原點,一次函數y=kx+b的圖象與x軸交于點A(﹣3,0),與y軸交于點B,且與正比例函數y=x的圖象的交點為C(m,4).
(1)求一次函數y=kx+b的解析式;
(2)D是平面內一點,以O、C、D、B四點為頂點的四邊形是平行四邊形,直接寫出點D的坐標.(不必寫出推理過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①是一個直角三角形紙片,∠C=90°,AB=13cm,BC=5cm,將其折疊,使點C落在斜邊上的點C′處,折痕為BD(如圖②),求DC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結AD1、BC1.已知∠ACB=30°,AB=1,
(1)求證:△A1AD1≌△CC1B;
(2)當CC1=1時,求證:四邊形ABC1D1是菱形。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com