【題目】如圖1,點(diǎn)P是線段AB上的動(dòng)點(diǎn)(P不與A、B重合),分別以AP、BP為邊向線段AB的同側(cè)作等邊△APC和等邊△BPD,AD和BC交于點(diǎn)M.
(1)求證:AD=BC;
(2)將點(diǎn)P在線段AB上隨意固定,再把△BPD按順時(shí)針?lè)较蚶@點(diǎn)P旋轉(zhuǎn)一個(gè)角度α(α<60°),如圖2所示,在旋轉(zhuǎn)過(guò)程中,∠AMC的度數(shù)是否與α的大小有關(guān)?證明你的結(jié)論.
【答案】
(1)解:如圖1,
∵△APC和△BPD是等邊三角形,
∴CP=AP,DP=PB,∠APC=∠DPB=60°,
∵∠BPC=180°﹣60°,∠DPA=180°﹣60°,
∴∠BPC=∠DPA,
在△BPC和△DPA中,
,
∴△BPC≌△DPA,
∴AD=BC
(2)解:∠AMC的度數(shù)與α的大小無(wú)關(guān),理由如下:
如圖2,∵∠BPC=∠CPD+60°,∠DPA=∠CPD+60°,
∴∠BPC=∠DPA,
在△BPC和△DPA中,
,
∴△BPC≌△DPA,
∴∠BCP=∠DAP,
∴∠AMC=180°﹣∠MCP﹣∠PCA﹣∠MAC
=120°﹣∠BCP﹣∠MAC
=120°﹣(∠DAP+∠MAC)
=120°﹣∠PAC
=60°,
∴∠AMC的度數(shù)與α無(wú)關(guān).
【解析】(1)只要證明△BPC≌△DPA即可.(2)先證明△BPC≌△DPA得到∠BCP=∠DAP,求出∠AMC的大小即可解決問(wèn)題.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等邊三角形的性質(zhì),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有3cm,4cm,7cm,9cm長(zhǎng)的四根木棒,任取其中三根組成一個(gè)三角形,那么可以組成的三角形的個(gè)數(shù)是【 】
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,連接AA′,若∠1=27°,則∠B的度數(shù)是( )
A.84°
B.72°
C.63°
D.54°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車在筆直的公路上行駛,兩次拐彎后,仍在原來(lái)的方向上平行前進(jìn),那么兩次拐彎的角度可能是( )
A.第一次右拐15°,第二次左拐165°
B.第一次左拐15°,第二次右拐15°
C.第一次左拐15°,第二次左拐165°
D.第一次右拐15°,第二次右拐15°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙O的切線,切點(diǎn)為D,AB經(jīng)過(guò)圓心O并與圓相交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】俗話說(shuō):“水滴石穿”,水滴不斷的落在一塊石頭的同一個(gè)位置,經(jīng)過(guò)若干年后,石頭上形成了一個(gè)深度為0.000000039cm的小洞,則0.000000039用科學(xué)記數(shù)法可表示為( 。
A. 3.9×10﹣8 B. ﹣3.9×10﹣8 C. 0.39×10﹣7 D. 39×10﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1∥l2 , 直線l與l1、l2分別交于A、B兩點(diǎn),點(diǎn)M,N分別在l1、l2上,點(diǎn)M,N,P均在l的同側(cè)(點(diǎn)P不在l1、l2上),若∠PAM=α,∠PBN=β.
(1)當(dāng)點(diǎn)P在l1與l2之間時(shí). 求∠APB的大小(用含α、β的代數(shù)式表示);
(2)若∠APM的平分線與∠PBN的平分線交于點(diǎn)P1 , ∠P1AM的平分線與∠P1BN的平分線交于點(diǎn)P2 , …,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點(diǎn)Pn , 則∠AP1B= , ∠APnB= . (用含α、β的代數(shù)式表示,其中n為正整數(shù))
(3)當(dāng)點(diǎn)P不在l1與l2之間時(shí). 若∠PAM的平分線與∠PBN的平分線交于點(diǎn)P,∠P1AM的平分線與∠P1BN的平分線交于點(diǎn)P2 , …,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點(diǎn)Pn , 請(qǐng)直接寫出∠APnB的大小.(用含α、β的代數(shù)式表示,其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】生物興趣小組的學(xué)生,將自己手機(jī)的標(biāo)本向本組其他成員各贈(zèng)送意見(jiàn),全組共贈(zèng)送了182件,如果全組有x名同學(xué),則根據(jù)題意列出的方程是()
A. x ( x+1)=182B. 2x(x+1)=182C. x(x-1)=182D. x(x-1)=182×2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是( )
A.角
B.等邊三角形
C.平行四邊形
D.圓
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com