把邊長為1的正方形紙片OABC放在直線m上,OA邊在直線m上,然后將正方形紙片繞著頂點A按順時針方向旋轉(zhuǎn)90°,此時,點O運動到了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B1處,又將正方形紙片AO1C1B1繞B1點,按順時針方向旋轉(zhuǎn)90°…,按上述方法經(jīng)過4次旋轉(zhuǎn)后,頂點O經(jīng)過的總路程為  ,經(jīng)過61次旋轉(zhuǎn)后,頂點O經(jīng)過的總路程為  

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


 某商家經(jīng)銷一種商品,用于裝修門面已投資3000元。已知該商品每千克成本50元,在第一個月的試銷時間內(nèi)發(fā)現(xiàn)項,當銷售單價為70元/ kg時,銷售量為100 kg,銷量w(kg)隨銷售單價x(元/ kg)的變化而變化,銷售單價每提高5元/ kg,銷售量減少10 kg。

     設該商品的月銷售利潤為y(元)(銷售利潤=單價×銷售量-成本-投資)。

    (1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);

(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍),并求出x為何值時,y的值最大?

(3)若在第一個月里,按使y獲得最大值的銷售單價進行銷售后,在第二個月里受物價部門干預,銷售單價不得高于90元,要想在全部收回投資的基礎上使第二個月的利潤達到1700,那么第二個月時里應該確定銷售單價為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點B的切線與AD的延長線交于F,過E作EG⊥BC于G,延長GE交AD于H.

(1)求證:AH=HD;

(2)若AE:AD=,DF=9,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,將菱形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:

①△A1AD1≌△CC1B;

②當四邊形ABC1D1是矩形時,x=;

③當x=2時,△BDD1為等腰直角三角形;

(0<x<)。

其中正確的是    (填序號)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,直線l:軸交于點A,將直線l繞點A順時針旋轉(zhuǎn)75º后,所得直線的解析式為【    】

A.       B.        C.      D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在平面直角坐標系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.

(1)寫出A、C兩點的坐標;

(2)當0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;

(3)當1<m<2時,是否存在實數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


把直線沿x軸方向平移m個單位后,與直線的交點在第一象限,則m的取值范圍是【    】

A.      B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點后立刻以原來的速度沿AB返回.點PQ運動速度均為每秒1個單位長度,當點P到達點C時停止運動,點Q也同時停止.連接PQ,設運動時間為tt >0)秒.

(1)求線段AC的長度;

(2)當點Q從點B向點A運動時(未到達A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l

①當l經(jīng)過點A時,射線QPAD于點E,求AE的長;

②當l經(jīng)過點B時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10

(1)求梯形ABCD的面積;

(2)動點P從點B出發(fā),以2個單位/s的速度沿B→A→D→C方向向點C運動;動點Q從點C出發(fā),以2個單位/s的速度沿C→D→A方向向點A運動;過點Q作QE⊥BC于點E.若P、Q兩點同時出發(fā),當其中一點到達終點時另一點也隨之停止運動,設運動時間為t秒.問:

①當點P在B→A上運動時,是否存在這樣的t,使得直線PQ將梯形ABCD的周長平分?若存在,請求出t的值,并判斷此時PQ是否平分梯形ABCD的面積;若不存在,請說明理由.

②在運動過程中,是否存在這樣的t,使得以P、D、Q為頂點的三角形恰好是以DQ為一腰的等腰三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案