【題目】如圖1,已知拋物線過點

1)求拋物線的解析式及其頂點C的坐標;

2)設點Dx軸上一點,當時,求點D的坐標;

3)如圖2.拋物線與y軸交于點E,點P是該拋物線上位于第二象限的點,線段PABE于點M,交y軸于點N的面積分別為,求的最大值.

【答案】1,頂點C的坐標為-(-1,4);(2;(3的最大值為.

【解析】

1)利用待定系數(shù)法,將A,B的坐標代入即可求得二次函數(shù)的解析式;

2)設拋物線對稱軸與x軸交于點H,在中,可求得,推出,可證,利用相似三角形的性質可求出AD的長度,進一步可求出點D的坐標,由對稱性可直接求出另一種情況;

3)設代入,求出直線PA的解析式,求出點N的坐標,由,可推出,再用含a的代數(shù)式表示出來,最終可用函數(shù)的思想來求出其最大值.

解:(1)由題意把點代入

得,,

解得,

∴此拋物線解析式為:,頂點C的坐標為

2)∵拋物線頂點,

∴拋物線對稱軸為直線,

設拋物線對稱軸與x軸交于點H,

,

中,

,

∴當時,

如圖1,當點D在對稱軸左側時,

,

,

,

,

當點D在對稱軸右側時,點D關于直線的對稱點D'的坐標為,

∴點D的坐標為

3)設,

代入,

得,,

解得,,

時,

如圖2,

,

由二次函數(shù)的性質知,當時,有最大值,

的面積分別為m、n,

的最大值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c的圖象與x軸交于A(4,0)和點B兩點,與y軸交于點C,拋物線的對稱軸是x=1x軸交于點D

1)求拋物線的函數(shù)表達式;

2)若點P(mn)為拋物線上一點,且﹣4m<﹣1,過點PPEx軸,交拋物線的對稱軸x=1于點E,作PFx軸于點F,得到矩形PEDF,求矩形PEDF周長的最大值;

3)點Q為拋物線對稱軸x=1上一點,是否存在點Q,使以點QB,C為頂點的三角形是直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,分別為軸、軸正半軸上的點,以為邊,在一象限內作矩形,且.將矩形翻折,使點與原點重合,折痕為,點的對應點落在第四象限,過點的反比例函數(shù),其圖象恰好過的中點,則點的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及率越來越高以及移動支付的快捷高效性,中國移動支付在世界處于領先水平.為了解人們平時最喜歡用哪種移動支付方式,因此在某步行街對行人進行隨機抽樣調查,以下是根據(jù)調查結果分別整理的不完整的統(tǒng)計表和統(tǒng)計圖.

移動支付方式

支付寶

微信

其他

人數(shù)/

   

200

75

請你根據(jù)上述統(tǒng)計表和統(tǒng)計圖提供的信息.完成下列問題:

1)在此次調查中,使用支付寶支付的人數(shù);

2)求表示微信支付的扇形所對的圓心角度數(shù);

3)某天該步行街人流量為10萬人,其中30%的人購物并選擇移動支付,請你依據(jù)此次調查獲得的信息估計一下當天使用微信支付的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y4x與雙曲線y交于AB兩點,過B作直線BCy軸,垂足為C,則以OA為直徑的圓與直線BC的交點坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與直線都經過點

1)求反比例函數(shù)和直線的解析式.

2)將一次函數(shù)的圖象沿軸向下平移個單位長度,使平移后的圖象與反比例函數(shù)的圖象有且只有一個交點,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 xOy 中,菱形 ABOC 的頂點 O 在坐標原點,邊 BOx 軸的負半軸上,頂點 C的坐標為(﹣3,4),反比例函數(shù) y 的圖象與菱形對角線 AO 交于 D 點,連接 BD,當 BDx 軸時,k的值是( )

A.B.C.12D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】都是實數(shù),且.我們規(guī)定:滿足不等式的實數(shù)的所有值的全體叫做閉區(qū)間、表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.

(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式;

(3)若實數(shù)滿足.且,當二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調查,并把調查結果繪制成兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,解答下列問題:

1)這次被調查的學生共有多少人?并將條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,“體育”對應的圓心角的度數(shù)是?

3)若該校約有1500名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?

查看答案和解析>>

同步練習冊答案